Loading...
Search for: kains--n
0.154 seconds

    Impact-abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite

    , Article Materials Science and Engineering A ; Volume 585 , 2013 , Pages 422-429 ; 09215093 (ISSN) Moghaddam, E. G ; Karimzadeh, N ; Varahram, N ; Davami, P ; Sharif University of Technology
    2013
    Abstract
    In this investigation, in-situ precipitation of vanadium carbides was employed to reinforce Fe-13Mn and Fe-13Mn-3W alloys by means of conventional melting and casting route. Microstructures were characterized by optical and scanning electron microscopy techniques.Mechanical properties of the materials were determined by hardness, impact toughness and tension tests. It was observed that tungsten improved the strength of the matrix and the reinforcements as well as tensile properties and work hardening rate of the VC-reinforced composite. Ball mill abrasion test was utilized to simulate impact-abrasion wear condition using two types of abrasive minerals. The results showed that the degree of... 

    Modeling behavior in compositions of software architectural primitives

    , Article Proceedings - 19th International Conference on Automated Software Engineering, ASE 2004, Linz, 20 September 2004 through 24 September 2004 ; 2004 , Pages 371-374 ; 0769521312 (ISBN); 9780769521312 (ISBN) Mehta, N. R ; Medvidovic, N ; Sirjani, M ; Arbab, F ; Sharif University of Technology
    2004
    Abstract
    Software architectures and architectural styles are increasingly used for designing large-scale software systems. Alfa is a framework for the composition of style-based software architectures from a small set of primitives. It models the behavior of architectural components and connectors as orderings among events at their inputs and outputs. Formalizing such behavior is useful for checking conformance of architectures to their styles. We therefore propose a formal approach that uses data-abstract constraint automata to model the behavior of Alfa's compositions, and to verify their behavioral style conformance. We have also developed an automated conformance analyzer for Alfa. © 2004 IEEE  

    Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications

    , Article Polymer Reviews ; Volume 60, Issue 1 , 2020 , Pages 144-170 Eslahi, N ; Mahmoodi, A ; Mahmoudi, N ; Zandi, N ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including... 

    Evaluation of rheological master curve models for bituminous binders

    , Article Materials and Structures/Materiaux et Constructions ; Volume 48, Issue 1-2 , January , 2015 , Pages 393-406 ; 13595997 (ISSN) Asgharzadeh, S. M ; Tabatabaee, N ; Naderi, K ; Partl, M. N ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Master curves of asphalt binders and mixtures have been traditionally used to evaluate their rheological behavior in the linear viscoelastic range. Different analytical models are available to describe the master curves of bituminous binders and mixtures. No models are currently considered universal for all modeling purposes. In this research, the general structure and capabilities of some of the most commonly used analytical models were investigated. Then, based on the patterns of phase angle master curves of ten neat and modified asphalt binders, four groups of master curve shapes were defined. The goodness of fit of the models for the different groups of master curves was used to develop... 

    Challenge in particle delivery to cells in a microfluidic device

    , Article Drug Delivery and Translational Research ; Volume 8, Issue 3 , 2018 , Pages 830-842 ; 2190393X (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Micro and nanotechnology can potentially revolutionize drug delivery systems. Novel microfluidic systems have been employed for the cell culture applications and drug delivery by micro and nanocarriers. Cells in the microchannels are under static and dynamic flow perfusion of culture media that provides nutrition and removes waste from the cells. This exerts hydrostatic and hydrodynamic forces on the cells. These forces can considerably affect the functions of the living cells. In this paper, we simulated the flow of air, culture medium, and the particle transport and deposition in the microchannels under different angles of connection inlet. It was found that the shear stress induced by the... 

    A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip

    , Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1... 

    Prediction of necrotic core and hypoxic zone of multicellular spheroids in a microbioreactor with a U-shaped barrier

    , Article Micromachines ; Volume 9, Issue 3 , 2018 ; 2072666X (ISSN) Barisam, M ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    MDPI AG  2018
    Abstract
    Microfluidic devices have been widely used for biological and cellular studies. Microbioreactors for three-dimensional (3D) multicellular spheroid culture are now considered as the next generation in in vitro diagnostic tools. The feasibility of using 3D cell aggregates to form multicellular spheroids in a microbioreactor with U-shaped barriers has been demonstrated experimentally. A barrier array is an alternative to commonly used microwell traps. The present study investigates oxygen and glucose concentration distributions as key parameters in a U-shaped array microbioreactor using finite element simulation. The effect of spheroid diameter, inlet concentration and flow rate of the medium... 

    Simple, Cost-effective, and continuous 3D dielectrophoretic microchip for concentration and separation of bioparticles

    , Article Industrial and Engineering Chemistry Research ; Volume 59, Issue 9 , 2020 , Pages 3772-3783 Tajik, P ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Dielectrophoresis is a robust approach for manipulating bioparticles in microfluidic devices. In recent years, many groups have developed dielectrophoresis-based microfluidic systems for separation and concentration of various types of bioparticles, where the gradient of the electric field causes dielectrophoresis force acting on the suspended particles. Enhancing the gradient of the electric field with three-dimensional (3D) electrodes can significantly improve the efficiency of the system. Implementing planar electrodes in a 3D arrangement is a simple option to form a 3D-electrode configuration. This paper reports the development of a novel dielectrophoretic microfluidic system for... 

    Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method

    , Article Journal of Physical Chemistry C ; Volume 112, Issue 47 , 2008 , Pages 18686-18689 ; 19327447 (ISSN) Hosseini, Z ; Taghavinia, N ; Sharifi, N ; Chavoshi, M ; Rahman, M ; Sharif University of Technology
    2008
    Abstract
    TiO2 deposited on a membrane of Ag fibers was prepared as a photoelectrochemical cell electrode. Ag fibers were made by reduction of Ag complexes on cellulose fibers, followed by burning out the template. TiO 2 photocatalyst layers were grown on the fibers by electrophoretic deposition of TiO2 nanoparticles. Ag fibers could be uniformly deposited. Photocatalytic tests by dye decomposition and electrochemical impedance spectroscopy (EIS) under UV illumination demonstrate that Ag fibers act as a good substrate that provides both high surface area and good separation of photogenerated electron-hole pairs and causes the enhancement of photocatalytic activity in comparison with a thin film of... 

    Fatigue properties of machinable austempered ductile iron

    , Article 16th International Metallurgical and Materials Conference, METAL 2007, 22 May 2007 through 24 May 2007 ; 2007 Tadayon Saidi, M ; Baghersaee, N ; Varahram, N ; Hanumantha Rao, M ; Sharif University of Technology
    TANGER spol. s r.o  2007
    Abstract
    MADI is new engineering material with very desirable properties such as higher strength at the same hardness compared to regular ductile iron, significantly better fatigue performance than regular ductile iron or austempered ductile iron, better machinability than regular austempered ductile iron and similar to as cast ductile iron. In this study,fatigue properties of Machinable Austempering Ductile was investigated using rotary -bend fatigue testing device. Chemical composition of sample was selected on the base of previous work which results in good mechanical properties and low hardness after austempering process. The results of this study,indicates that for an austempered ductile iron... 

    Monolithic quantum dot sensitized solar cells

    , Article Journal of Physics D: Applied Physics ; Volume 46, Issue 48 , December , 2013 ; 00223727 (ISSN) Samadpour, M ; Ghane, Z ; Ghazyani, N ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2013
    Abstract
    We report a new design of solar cells based on semiconductor quantum dots (QDs), monolithic quantum dot sensitized solar cells (MQDSCs). MQDSCs offer the prospect of having lower cost and a simpler manufacturing process in comparison to conventional double substrate QDSCs. Our proposed monolithic QDSCs have a triple-layer structure, composed of a CdS sensitized mesoporous TiO2 photoanode, a scattering layer made by a core-shell structure of TiO 2/SiO2, and a carbon active/graphite counter electrode layer, which are all deposited on a single fluorine doped tin oxide (FTO) glass substrate. Mesoporous TiO2 was sensitized with CdS QDs by successive ionic layer adsorption and reaction. Here,... 

    Carbon-based nanocomposite decorated with bioactive glass and CoNi2S4 nanoparticles with potential for bone tissue engineering

    , Article OpenNano ; Volume 8 , 2022 ; 23529520 (ISSN) Bagherzadeh, M ; Aldhaher, A ; Ahmadi, S ; Baheiraei, N ; Rabiee, N ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    In this work, for the first time, different forms of nanocomposites based on rGO and MWCNT were prepared in conjoining with the bioactive glass (BioGlass). In the carbonic layers, a highly toxic nanoparticle, CoNi2S4, was intercalated, and the role of this nanoparticle in the alkaline phosphatase activity, relative cell viability on different cell lines, and also the effect on the cell walls and cell morphologies were investigated. From another perspective, the ability of the chemotherapy drug loading to the prepared nanocomposites was investigated, and the use of leaf extracts was thought of as a green method to lower the cytotoxicity and regulate the genotoxicity of the generated... 

    Numerical simulation of liquid/solid phases flow during mold filling

    , Article Zhuzao/Foundry ; Volume 55, Issue 4 , 2006 , Pages 373-377 ; 10014977 (ISSN) Babaei, R ; Hatami, N ; Asgari, K ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    Solid slugs tracking in melt in the casting is very important. In this study a model for particle transport trajectories is presented. In this model an explicit method was used to evaluate the position of the particles. Comparison between results of present work and other models has good agreement sand this model can expect determining the location of solid particles in the melt. This model is applied to SUTCAST software  

    Binding assessment of two arachidonic-based synthetic derivatives of adrenalin with β-lactoglobulin: Molecular modeling and chemometrics approach

    , Article Biophysical Chemistry ; Volume 207 , 2015 , Pages 97-106 ; 03014622 (ISSN) Gholami, S ; Bordbar, A. K ; Akvan, N ; Parastar, H ; Fani, N ; Gretskaya, N. M ; Bezuglov, V. V ; Haertlé, T ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A computational approach to predict the main binding modes of two adrenalin derivatives, arachidonoyl adrenalin (AA-AD) and arachidonoyl noradrenalin (AA-NOR) with the β-lactoglubuline (BLG) as a nano-milk protein carrier is presented and assessed by comparison to the UV-Vis absorption spectroscopic data using chemometric analysis. Analysis of the spectral data matrices by using the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm led to the pure concentration calculation and spectral profiles resolution of the chemical constituents and the apparent equilibrium constants computation. The negative values of entropy and enthalpy changes for both compound indicated... 

    Graphene as a flexible electrode: Review of fabrication approaches

    , Article Journal of Materials Chemistry A ; Volume 5, Issue 34 , 2017 , Pages 17777-17803 ; 20507488 (ISSN) Tan, R. K. L ; Reeves, S. P ; Hashemi, N ; Thomas, D. G ; Kavak, E ; Montazami, R ; Hashemi, N. N ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    In recent years, the technological advancement of supercapacitors has been increasing exponentially due to the high demand in electronic consumer products. As so, researchers have found a way to meet that demand by fabricating graphene. As developments are made toward the future, two big advancements to be made are large-scale fabrication of graphene and fabricating graphene as a flexible electrode. This would allow for use in larger products and for manipulation of the unique properties of graphene to accommodate superior design alternatives. While large scale production is still mentioned, this review is specifically focusing on different methods used to fabricate graphene as a flexible... 

    Advancement of sensor integrated organ-on-chip devices

    , Article Sensors (Switzerland) ; Volume 21, Issue 4 , 2021 , Pages 1-44 ; 14248220 (ISSN) Clarke, G.A ; Hartse, B. X ; Niaraki Asli, A. E ; Taghavimehr, M ; Hashemi, N ; Abbasi Shirsavar, M ; Montazami, R ; Alimoradi, N ; Nasirian, V ; Ouedraogo, L. J ; Hashemi, N. N ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based... 

    Enzymes : catalysis, kinetics and mechanisms

    , Book Punekar, N. S
    Springer  [2018]

    Analysis of the bio-environmental advantages using two types of activated carbon at a petro-chemical water treatment plant

    , Article 18th International Congress of Chemical and Process Engineering, CHISA 2008, Prague, 24 August 2008 through 28 August 2008 ; 2008 Ahmadpour, A ; Mansouri, M ; Badry, N
    2008
    Abstract
    Activated carbon powder was analyzed at one of the petro-chemical units in Iran, to determine the usefulness of this material in waste water treatment. Two types of commercial activated carbon powder were used giving different results, attributed to different constituents. For every experiment, 4 kg of activated carbon was used in the pilot plant column. Analysis results on the effect of parameters, e.g., inlet volumetric flow rate of waste water and activated carbon structure, on the plant performance were presented. This is an abstract of a paper presented at the 18th International Congress of Chemical and Process Engineering (Prague, Czech Republic 8/24-28/2008)  

    A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation

    , Article Bioresource Technology ; Volume 192 , 2015 , Pages 177-184 ; 09608524 (ISSN) Hosseinzadeh, M ; Bidhendi, G. N ; Torabian, A ; Mehrdadi, N ; Pourabdullah, M ; Sharif University of Technology
    2015
    Abstract
    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover,... 

    Modeling the detection efficiency in photodetectors with temperature-dependent mobility and carrier lifetime

    , Article Superlattices and Microstructures ; Volume 122 , 2018 , Pages 557-562 ; 07496036 (ISSN) Moeini, I ; Ahmadpour, M ; Mosavi, A ; Alharbi, N ; Gorji, N. E ; Sharif University of Technology
    2018
    Abstract
    We proposed a modeling procedure to calculate the impact of temperature on the detection efficiency in photodetectors based on CdTe materials. Temperature increase impacts on the electrical properties of the materials such as carrier mobility and carrier recombination lifetime. This impact which can be effective in some cases has been normally ignored in the modeling approaches presented in the literature. Here we show that increasing the temperature from 190 K to 300 K not reduces the mobility of both electrons and holes but also significantly reduces the carrier lifetime. The result will impact on electric-field within the depletion width of the device, drift and diffusion lengths which...