Loading...
Search for: asgari--farzane
0.123 seconds

    Radar Directional Finding by Interferometric Method in 2-18 GHzBW

    , M.Sc. Thesis Sharif University of Technology Pournadim, Hamid Reza (Author) ; Farzane, Frohar (Supervisor) ; Pezeshk, Amir Mansor (Co-Advisor)
    Abstract
    One of the important jobs of ESM and Elint receiver is to find the direction of arrival of the targets. Also DOA estimation has applications in guiding missiles and jammers location, position finding using of multiple DF systems which are placed in different locations is the most important use of this type of system.
    A DF system has multiple parts: receiver, algorithm and arrays of antennas.
    Amplitude comparison algorithms are more simple but on the other hand phase comparison algorithms prepare more accurate estimation. In this thesis these algorithms are simulated and to each other. And it will be concluded that, in the application being test, the "MUSIC" algorithm is the best.... 

    Correlations in a multisubband quasi-one-dimensional electron gas

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 62, Issue 23 , 2000 , Pages 16001-16017 ; 01631829 (ISSN) Nafari, N ; Nafari, N ; Asgari, R ; Asgari, R ; Sharif University of Technology
    2000
    Abstract
    This paper is an extension of an earlier work on electron correlations in semiconducting GaAs-based quasi-one-dimensional quantum wires. The extension was twofold. First, we developed the Singwi, Tosi, Land, and Sölander (STLS) scheme for multisubband structures. Secondly, we developed the multisubband ladder approximation diagrammatic technique. By using the results obtained for the spin symmetric and spin antisymmetric interpolarization and intrapolarization potentials, we calculate the corresponding electron-electron effective potentials. Our results for a two-subband model show that these effective potentials have an attractive part implying the occurrence of s-wave and p-wave pairings,... 

    Anomalous plastic behavior of fine-grained MP35N alloy during room temperature tensile testing

    , Article Journal of Materials Processing Technology ; Volume 155-156, Issue 1-3 , 2004 , Pages 1905-1911 ; 09240136 (ISSN) Asgari, S ; Sharif University of Technology
    2004
    Abstract
    In this paper, results of an investigation on the strain hardening responses of superalloy MP35N with two average grain sizes of 38 and 1 μm, during room temperature tensile testing are reported. The microstructural evolution of the deformed samples was studied using optical and transmission electron microscopy (TEM) techniques. The strain hardening behavior of the 38 μm material was rather similar to that previously reported for low stacking fault energy (SFE) fee alloys. The plastic behavior of the fine grain material, however, was unexpected. In the strain range of 0.1-0.4, the work hardening rate of the fine grain size sample was evidently lower than that of the large grain size... 

    Age-hardening behavior and phase identification in solution-treated AEREX 350 superalloy

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 37, Issue 7 , 2006 , Pages 2051-2057 ; 10735623 (ISSN) Asgari, S ; Sharif University of Technology
    2006
    Abstract
    This article presents results of an investigation on age-hardening behavior of superalloy AEREX 350. Microhardness testing was employed to evaluate the age-hardening response of the alloy while optical, scanning, and transmission electron microscopy techniques were used to characterize the major phases formed during the aging process. No significant hardening was found in solution-treated samples aged at temperatures up to about 680 °C. Aging at 700 °C up to 950 °C, however, caused a characteristic hardening response. This hardening was concurrent with the formation of γ', an ordered phase with L12 structure, as fine precipitate distributed throughout the fcc matrix. In the temperature range... 

    Comparative Examination and Preparation of Polymeric Hydrogels in Order to use as Cellular Scaffold

    , M.Sc. Thesis Sharif University of Technology Nazaripouya, Amir (Author) ; Alemzadeh, Iran (Supervisor) ; Sharifi Aghdas, Farzane (Supervisor) ; Mashayekhan, Shohre (Supervisor)

    Production of Nanostructured Composite Sheets of AA1100/St37 Using ARB Technique and Evaluation of Heat Treatment Effect on Grains Structure

    , M.Sc. Thesis Sharif University of Technology Vakili, Hossein (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In present work, nanostructured multilayer composites produced from AA1100 and St37 alloys and mechanical properties of resulted samples characterized using tension and micro hardness tests. Also dispersion pattern of second phase in matrix studied via optical microscopy. Thickness of second phase layers showed a little reduction after 2 ARB cycles; but their length decrease gradually. With increasing number of ARB cycles up to 6 cycles, sample's tensile strength first decrease rapidly and after that increased, but never reached initial value. In order to evaluation of heat treatment effects on samples grain structure, samples heat treated and tensile test carried on them. Annealing at 300... 

    The Effects of Stress-Assisted Heat Treatment on the Microstructure and Phase Transformation Behavior of Ni-Rich Ni-Ti Shape Memory Alloy

    , M.Sc. Thesis Sharif University of Technology Rahmanian, Rowshan (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Ni-Ti shape memory alloys have attracted most of the research in the field of shape memory alloys both because of their complicated and diverse phase transformation characteristics and their optimum properties for various applications which span such a properties as shape memory effect, pseudoelasticity, excellent mechanical properties and biocompatibility. The key properties of these alloys is generated through a thermoelastic martensitic transformation the occurrence of which is extremely sensitive to the metallurgical conditions of the alloy e.g. composition and microstructure. This has led to the development of various procedures implemented in either fabrication, processing or heat... 

    Ferromagnetic Single Electron Transistor

    , M.Sc. Thesis Sharif University of Technology Asgari, Somaieh (Author) ; Faez, Rahim (Supervisor)
    Abstract
    This thesis completely introduses ferromagnetic single electron transistor while that identifies the application and types of the transistor.Master equation is used for simulationing of the transistor. This simulation is divided to two general sections.In the first section proposed thermal equilibrium the normal island and The two spin subsystems , however, are in thermal equilibrium and quantized nature of energy spectrum of a small central electrode and fluctuations in the spin accumulation were ignored , however, we simplify the problem and assume that the charging energy are independent of the electron distribution, and number of electrons in the normal island. ،hat tunnel rates can be... 

    The Study of Microstructure and Phase Transformations in MP210 Superalloy

    , M.Sc. Thesis Sharif University of Technology Abouali, Sara (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    MP210 alloy is a member of multiphase family alloys, a class of wrought nickel-cobalt base alloys extensively used in high-quality applications including aerospace fasteners, gas turbine engines and petrochemical industry. Very limited information can be found in the literature about the microstructure and phase transformations of this alloy. The aim of this work is characterizing the aging response of the material and identifying the major strengthening phases precipitated in different range of temperatures and also studying the static recrystallization behavior of this alloy. The effect of age-hardening heat-treatment on the microstructure of MP210 superalloy was investigated using... 

    Processing of Nanostructured Composite from Al1050 and Al2024 Via Aaccumulative Roll Bonding (ARB) and Study of Heattreatment Effects on its Microstructure and Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Aida (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study nanostructured composite from Al1050 and Al2024 were manufactured via accumulative roll bonding (ARB). Process was conducted in two different ways. In one approach the Al2024 sheets were annealed and in the other they were solution treated (ST). The sheets were degreased by acetone and wire-brushed, and then one Al2024 was placed between two sheets of Al1050, so three pieces of sheets were stacked to be 3 mm in thickness. The stacked sheets were rollbonded to produce the primary composite sandwich with thickness of 1 mm. Then, this sandwich was cut in the half and the two halves were degreased and wire-brushed and stacked to be 2 mm in thickness. Roll-bonding was conducted... 

    Linear Hardening in FCC Alloys

    , Ph.D. Dissertation Sharif University of Technology Hamdi, Farzad (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Previous observation and models on the origin of linear hardening behavior in FCC polycrystals are critically reviewed. To reveal the draw backs of the previous models, selected results of an investigation on the evolution of microstructure during simple compression testing of two FCC polycrystals, Inconel 625 superalloy and AISI 316L stainless steel are reported. It is found that while a number of FCC polycrystals show linear hardening behavior, the evolution of the underlying microstructure may be quite different. It is argued that, in contrast to the current belief, deformation twinning may not be the sole cause of linear hardening in low SFE FCC polycrystals. It is suggested that only... 

    Late-stage evolution of thin liquid coating films over step topographies

    , Article Advanced Materials Research ; Volume 569 , 2012 , Pages 560-563 ; 10226680 (ISSN) ; 9783037854808 (ISBN) Asgari, M ; Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    Mesoscopic hydrodynamic equations are solved to investigate late-stage evolution of thin liquid films over step topographies. Different geometrical parameters including step height and initial position and configuration of resultant masses of dewetting (droplets) are probed to find their effects on the mass evolution of the system. Our results indicate that increasing the step height and locating the droplets close to the step enhance the dynamics and accelerate smaller droplet collapse  

    The Effect of Heat Treatment on Microsructure, Hot Tensile Properties and Creep Bihavior of Nickel-based Superalloy CM88Y

    , M.Sc. Thesis Sharif University of Technology Gorji, Morteza (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    The Ni-base superalloy CM88Y has good hot corrosion resistance, high stability and strength at elevated temperature; accordingly, the alloy is used in manufacturing of gas turbine hot components. In most applications, heat treatment is required in order to achieve the desired mechanical properties and corrosion resistance of the working conditions; often three stages of heat treatment is designed for precipitation hardening nickel-base superalloy. In general, the effective parameters of heat treatment cycles includes temperature, time, heating rate and the cooling rate. In this study, the effect of cooling rate from partial solution temperature (second stage of heat treatment) on the... 

    Reduced master equation for modeling of ferromagnetic single-electron transistor

    , Article Applied Mechanics and Materials, 29 July 2011 through 31 July 2011, Bangkok ; Volume 110-116 , July , 2012 , Pages 3103-3110 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Asgari, S ; Faez, R ; Sharif University of Technology
    2012
    Abstract
    In this paper, the reduced master equation which is a fast simulation method of spin dependent transport in ferromagnetic single electron transistors is presented, for first time. This simulation method follows steady state master equation in which all charge states of the system are considered, whereas charge states are decreased in reduced master equation. This method is based on two degrees of electron freedom which are charge and spin. This is applied in the condition that orthodox tunneling theory is applicable to calculate the tunneling rate of electrons through barriers. The comparison between the I-V characteristics of a ferromagnetic single-electron transistor by following the... 

    Analyzing Networks by Means of Friendship Paradox

    , M.Sc. Thesis Sharif University of Technology Asgari, Arash (Author) ; Haji, Babak (Supervisor)
    Abstract
    Due to the vast application of networks in the modeling of problems, the analysis of networks has been gaining a noticeable importance in recent researches. There are some cases in which we are looking for nodes that are highly connected to other nodes. However, the detailed information of the network structure is not always available; or because of complexity, it is not possible to investigate whole network and pick high-degree nodes; or investigating the network completely is too time-consuming. In such cases, algorithms which do not need the whole network information play a significant role. Friendship paradox as a topological feature of graphs can be helpful in designing such algorithms.... 

    Design and Implementation of Variable Impedance Control for Lower-Limb Exoskeletons with Desired Gate Refinement

    , M.Sc. Thesis Sharif University of Technology Asgari, Taha (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    The main goal of this thesis is to develop and implement a variable Impedance control method with the ability to refine the desired gait in an online manner. For this purpose, a dataset consisting of 89 healthy gaits was utilized. Then, “Basic shapes” were driven using principal component analysis and their meaningfulness was investigated. Regarding the meaningfulness of coefficients of basic shapes, a normality metric was defined to evaluate the human gaits. Furthermore, as a reference gait refinement in Impedance control, an outer loop was added to change the desired gait, according to traversed gait. Kalman filter was used to estimate the coefficients of basic shapes in this loop. In... 

    Electrochemical and Microstructural Analysis of Aging Mechanism of 18650 LiFePO4/Graphite Li-ion Batteries under Different C-Rate and Temperature Conditions

    , M.Sc. Thesis Sharif University of Technology Sharifi, Hossein (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    In this study, the aging of the LiFePO4/graphite cell was investigated in two different types of 18650 Li-ion batteries during cycling at various C-rates (0.5, 1, 2, 3, 4C) and high temperature under long-term cycling. An amount of 20% Capacity loss was considered as the end of the cycling. Batteries with a capacity of 1500 mAh after this capacity drop, experience 60, 120, 1502, and 2155 cycles, at the rates of 4, 3, 2, and 1C , and batteries with capacity of 1400 mAh was also 60, 360, 1100, 1000, and 805 cycles at a rate of 0.5C. Capacity decrease of the cell is in linear relationship with cycle number and the slope of the capacity-fading line increases with elevating current rate. Aging... 

    Study of Microstructural Changes Associated with Internal Resistance of a Li-ion Battery

    , M.Sc. Thesis Sharif University of Technology Tabean, Saba (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    As one of the main features of Li-Ion batteries, internal resistance severely affects performance and characteristics of these batteries e.g. output power and working voltage. In this study, we tried to understand role of internal resistance on microstructure development and provide a correlative relation between microstructural features and performance of lithium-ion batteries. To catch this target, four types of Li-Ion battery chose, varying cathode type. These batteries were exposed to both normal and severe cycling conditions. Regarding to the key role of current rate on the performance of Li-ion batteries, an extensive research on different types of batteries at various current rates... 

    Influence of Heat Treatment on Size and Morphology of Various γ′ Phase in IN738LC and GTD-111 Superalloys

    , M.Sc. Thesis Sharif University of Technology Mardiha, Pourya (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Gamma prime (γ') precipitates are the most important phase in nickel-base superalloys that rise to a combination of desirable properties in superalloys. The morphology of these particles has important contribution to the resulting properties of superalloys. Heat treatment process of superalloys is one of the most important factors affecting the characteristics of the γ' phase. In this study, nickel-base superalloys IN738LC and GTD-111 were used to study the evolution of the microstructure and morphology of the γ' precipitates under a variety of heat treatment cycles including partial dissolution, aging for different times and under a range of cooling rates. Morphology and characteristics of... 

    Preparation and Characterization of Smart Carbon-based Nanocarriers Modified with Polymers for Targeting Delivery of Anticancer Drugs

    , Ph.D. Dissertation Sharif University of Technology Asgari, Shadi (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    The use of nanocarriers has been recently considered for targeted drug delivery. In the targeted drug delivery systems, drug is directed to the target tissue and its adverse effects are reduced on the healthy tissues. Graphene oxide and hollow mesoporous carbon nanospheres are two types of the most interesting carbon-based nanocarriers because of their unique properties. Aim of the thesis has been the synthesis of the nanocarriers based-on graphene oxide and hollow mesoporous carbon nanospheres and their surface modifications by magnetic polyamidoamine dendrimer and oxygen-rich polymers such as poly(epichlorohydrin) and hyperbranched polyglycerol. These modifications result in higher...