Loading...
Search for: beidokhti--b
0.097 seconds

    Hydrogen failure sensitivity of A516-Gr70 and API 5L-X70 steels in sour environments

    , Article Anti-Corrosion Methods and Materials ; Volume 62, Issue 5 , 2015 , Pages 294-300 ; 00035599 (ISSN) Taheri, H ; Dolati, A ; Beidokhti, B ; Sharif University of Technology
    Emerald Group Publishing Ltd  2015
    Abstract
    Purpose – This paper aims to clarify the corrosion behavior of two famous structural steels in sour environment. These steels have a vast application in oil and gas industries. The study aims to find the effect of different concentrations of sour solution on the origin of crack in these steels. Design/methodology/approach – After preparation of specimens, different sour solutions were made using the synthetic brine (according to National Association of Corrosion Engineers [NACE], Technical Committee Report 1D182) and various amounts of Na2S.9H2O and CH3COOH. The polarization test was done by Potansiostat apparatus model Zahner-IM6 at two temperatures, 25°C... 

    Influences of titanium and manganese on high strength low alloy SAW weld metal properties

    , Article Materials Characterization ; Volume 60, Issue 3 , 2009 , Pages 225-233 ; 10445803 (ISSN) Beidokhti, B ; Koukabi, A.H ; Dolati, A ; Sharif University of Technology
    2009
    Abstract
    The objective of this work was to study the influence of titanium on API 5L-X70 steel weld metal properties at manganese levels of 1.4 and 2%. The best mechanical properties in the weld series were obtained in two compositions, i.e. 1.92%Mn-0.02%Ti and 1.40%Mn-0.08%Ti. In both groups of welds, acicular ferrite in the microstructure was increased with addition of titanium in the range of 0.02-0.08%. Manganese helped to refine and homogenize weld microstructures. Increased hardenability of the weld due to further addition of titanium or manganese encouraged grain boundary nucleation of bainite with greater frequency than intragranular nucleation of acicular ferrite. Also, the amount of... 

    Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking

    , Article Materials Science and Engineering A ; Volume 507, Issue 1-2 , 2009 , Pages 167-173 ; 09215093 (ISSN) Beidokhti, B ; Dolati, A ; Koukabi, A. H ; Sharif University of Technology
    2009
    Abstract
    Hydrogen-induced cracking (HIC) and sulfide stress cracking (SSC) susceptibility of the submerged arc welded API 5L-X70 pipeline steel with different amounts of titanium at two levels of manganese (1.4% and 2%) were studied. The centerline segregation region (CSR) observed in the X70 pipe steel played an important role in the HIC susceptibility. Increased acicular ferrite content in the microstructure improved HIC resistance and SSC resistance, while bainite and martensite/austenite constituents deteriorated the workability of the welded specimens in sour environments. The 2% Mn-series welds showed higher SSC susceptibility than the 1.4% Mn-series welds due to the higher hardness values of... 

    Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel

    , Article Journal of Materials Processing Technology ; Volume 209, Issue 8 , 2009 , Pages 4027-4035 ; 09240136 (ISSN) Beidokhti, B ; Koukabi, A. H ; Dolati, A ; Sharif University of Technology
    2009
    Abstract
    The effect of titanium addition on the SAW weld metal microstructure of API 5L-X70 pipeline steel was investigated. The relationship between microstructure and toughness of the weld deposit was studied by means of full metallographic, longitudinal tensile, Charpy-V notch and HIC tests on the specimens cut transversely to the weld beads. The best combination of microstructure and impact properties was obtained in the range of 0.02-0.05% titanium. By further increasing of titanium content, the microstructure was changed from a mixture of acicular ferrite, grain-boundary ferrite and Widmanstätten ferrite to a mixture of acicular ferrite, grain-boundary ferrite, bainite and ferrite with M/A... 

    A comprehensive study on the microstructure of high strength low alloy pipeline welds

    , Article Journal of Alloys and Compounds ; Vol. 597 , June , 2014 , pp. 142-147 ; ISSN: 09258388 Beidokhti, B ; Kokabi, A. H ; Dolati, A ; Sharif University of Technology
    2014
    Abstract
    The microstructural characteristic of HSLA welds containing different amounts of titanium were evaluated carefully. It was observed that the microstructure of welds consisted of ferrite with mixed morphologies, and small amounts of pearlite and martensite-austenite micro-constituents. Because of insufficient time for diffusion of carbon, formation of pearlite lamellae could not be completed in the weld region. Martensite was formed from carbon enrichment of austenite during nucleation and growth of acicular ferrite and bainitic ferrite. While coarse manganese sulfide particles had weak interface strength with matrix and formed some micro-fissures; increasing titanium amount of welds... 

    Control of hydrogen cracking in the welded steel using microstructural traps

    , Article Materials Science and Technology (United Kingdom) ; Volume 33, Issue 4 , 2017 , Pages 408-414 ; 02670836 (ISSN) Beidokhti, B ; He, P ; Kokabi, A. H ; Dolati, A ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Hydrogen diffusion into steel can embrittle the material in H2S environments, but this effect can be offset by suitable hydrogen trapping sites in the microstructure. Fine Ti(C,N) inclusions have been studied as the trapping sites in high strength low alloy (API X-70) welds, with Ti additions ranging from 0.004 to 0.16 wt.%. The trapping sites were investigated by electron microscopy and thermal desorption spectroscopy. Manganese sulphide particles were the main initiation sites for hydrogen induced cracking as expected. The optimum Ti addition was around 0.02% with no evidence of cracking in the weld. The estimated values of trapping activation energy for dislocations, microvoids, MnS and... 

    The change in the chemical composition and toughness of API 5L-X70 welds by addition of titanium

    , Article International Journal of Modern Physics B ; Volume 23, Issue 6-7 , 2009 , Pages 1209-1216 ; 02179792 (ISSN) Beidokhti, B ; Koukabi, A. H ; Dolati, A ; He, P ; Sharif University of Technology
    2009
    Abstract
    The objective of this work was to study the influence of titanium variations on the API 5L-X70 steel weld metal properties. The relationship between microstructure and toughness of the weld deposit was studied by means of full metallographic, longitudinal tensile and Charpy-V notch tests on the specimens cut transversely to the weld beads. The best combination of microstructure and impact properties was obtained in the range of 0.02-0.05% titanium. By further increasing of titanium content, the microstructure was changed from a mixture of acicular ferrite, grain-boundary ferrite, Widmanstätten ferrite to a mixture of acicular ferrite, grain-boundary ferrite, bainite and ferrite with M/A... 

    Effect of Titanium on the Microstructure and Sour Environment Cracking Resistance of API 5L-X70 SAW Weld Metals

    , Ph.D. Dissertation Sharif University of Technology Beidokhti, Behrooz (Author) ; Kokabi, Amir Hossein (Supervisor) ; Dolati, Abolghasem (Supervisor)
    Abstract
    In this research, the effect of addition of titanium to the weld metal of API 5L-X70 steel at two levels of manganese (1.4 and 2.0%) was studied; and the microstructure, mechanical properties, and hydrogen cracking resistance of the weld metals were investigated carefully. The submerged arc welding method was used for preparation of the welds and the metallographic test, hardness test, longitudinal tension test, Charpy V-notch impact test, HIC and SSC evaluation tests and thermal desorption spectroscopy test were done for each weld. The results showed that the addition of titanium to the weld metal increased formation of acicular ferrite; therefore, toughness of the welds was increased... 

    Modelling and analysis of the effect of angular velocity and acceleration on brain strain field in traumatic brain injury

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , 2013 ; 9780791856215 (ISBN) Hoursan, H ; Ahmadian, M. T ; Barari, A ; Beidokhti, H. N ; Sharif University of Technology
    2013
    Abstract
    Traumatic brain injury (TBI) has long been known as one of the most anonymous reasons for death around the world. A presentation of a model of what happens in the process has been under study for many years; and yet it remains a question due to physiological, geometrical and computational complications. Although the facilities for soft tissue modeling have improved and the precise CT-imaging of human head has revealed novel details of brain, skull and the interface (the meninges), a comprehensive FEM model of TBI is still being studied. This study aims to present an optimized model of human head including the brain, skull, and the meninges after a comprehensive study of the previous models.... 

    Designing a Total Knee Replacement to Obtain Minimum Wear on Contact Surfaces and Reduce the Risk of Loosening Using Fgm and Sma

    , M.Sc. Thesis Sharif University of Technology Naghibi Beidokhti, Hamid (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Zohoor, Hassan (Co-Advisor)
    Abstract
    In recent years, Total Knee Replacement is a highly common surgery. Other than the injuries caused by trauma in accidents among different ages, a need for Total Knee Replacement can arise due to diseases such as Knee Osteoporosis among the elderly which leads to loss of balance in the physiologic properties of knee joint and a failure in load transfer from distal femur to proximal tibia. Currently, the practice of Total Knee Replacement is performed by implanting a mechanical knee between femoral and tibial shafts. Increase in life expectancy of the people with replaced knee, causes the failure of some prostheses due to various factors. Following the failure, a second operation is required... 

    Microwave-induced Cannizzaro reaction over neutral γ-alumina as a polymeric catalyst [electronic resource]

    , Article Reactive and Functional Polymers ; 01/2002; 51(1):49-53 Pourjavadi, A. (Ali) ; Soleimanzadeh, B ; Marandi, G. B
    Abstract
    γ-Alumina is used to catalyze the Cannizzaro reaction in the absence of any base under microwave irradiation in high yields. In the case of terephthalaldehyde the reaction is carried out with high selectivity  

    SnCl4/SiO2: an efficient heterogeneous alternative for one-pot synthesis of β-acetamidoketones

    , Article Journal of the Chinese Chemical Society ; Volume 56, Issue 2 , 2009 , Pages 386-391 ; 00094536 (ISSN) Mirjalili, B. B. F ; Mahmoodi Hashemi, M ; Sadeghi, B ; Emtiazi, H ; Sharif University of Technology
    2009
    Abstract
    Enolizable ketones have been reacted in a one-pot method with aromatic aldehydes, acetyl chloride and acetonitrile at room temperature in the presence of SnCl4/SiO2 to furnish the corresponding β-acetamidoketones in improved yields. Acetylation of an aromatic hydroxyl group was observed while using 4-hydroxybenzaldehyde or vanillin and the corresponding β-acetamidoketones were isolated in an excellent yield  

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The... 

    Numerical investigation of steady density currents flowing down an incline using v2̄ - F turbulence model

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 9 , 2007 , Pages 1172-1178 ; 00982202 (ISSN) Khakzad, N ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2007
    Abstract
    The governing equations of two-dimensional steady density currents are solved numerically using a finite volume method. The v2̄-f turbulence model, based on standard k - s model, is used for the turbulence closure. In this method, all Reynolds stress equations are replaced with both a transport equation for v2̄ and an elliptic relaxation equation for f, a parameter closely related to the pressure strain redistribution term. The Simple-C procedure is used for pressure-velocity coupling. In addition, Boussinesq's approximation is used to obtain the momentum equation. The computed height of the progressive density current is compared to the measured data in the literature, resulting in good... 

    Numerical simulation of turbid-density current using v2̄ - f turbulence model

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 261 FED , 2005 , Pages 619-627 ; 08888116 (ISSN); 0791842193 (ISBN); 9780791842195 (ISBN) Mehdizadeh, A ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2005
    Abstract
    The deposition behavior of fine sediment is an important phenomenon, and yet unclear to engineers concerned about reservoir sedimentation. An elliptic relaxation turbulence model (v2̄ - f model) has been used to simulate the motion of turbid density currents laden whit fine solid particles. During the last few years, the v2̄ - f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. In addition, it has been proved that the v2̄ - f model to be superior to other RANS methods in many fluid flows where complex flow features are present. Due to low Reynolds number turbulence of turbidity current,(its critical Reynolds... 

    Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media

    , Article Rheologica Acta ; Volume 55, Issue 11-12 , 2016 , Pages 935-955 ; 00354511 (ISSN) Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    In this paper, creeping motion of a viscoelastic drop falling through a Newtonian fluid is investigated experimentally and analytically. A polymeric solution of 0.08 % xanthan gum in 80:20 glycerol/water and silicon oil is implemented as the viscoelastic drop and the bulk viscous fluids, respectively. The shape and motion of falling drops are visualized using a high speed camera. The perturbation technique is employed for both interior and exterior flows, and Deborah and capillary numbers are considered as perturbation parameters up to second order. The product of Deborah and capillary numbers is also used as a perturbation parameter to apply the boundary condition on the deformation on the... 

    Minimizing uplink delay in delay-sensitive 5G CRAN platforms

    , Article 2nd IEEE 5G World Forum, 5GWF 2019, 30 September 2019 through 2 October 2019 ; 2019 , Pages 154-160 ; 9781728136271 (ISBN) Ataie, A ; Kanaanian, B ; Khalaj, B. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we consider the problem of minimizing the uplink delays of users in a 5G cellular network. Such cellular network is based on a Cloud Radio Access Network (CRAN) architecture with limited fronthaul capacity, where our goal is to minimize delays of all users through an optimal resource allocation. Earlier works minimize average delay of each user assuming same transmit power for all users. Combining Pareto optimization and Markov Decision Process (MDP), we show that every desired balance in the trade-off among infinite-horizon average-reward delays, is achievable by minimizing a properly weighted sum delays. In addition, we solve the problem in two realistic scenarios;... 

    Analytical solution for creeping motion of a viscoelastic drop falling through a Newtonian fluid

    , Article Korea Australia Rheology Journal ; Vol. 26, issue. 1 , 2014 , pp. 91-104 ; ISSN: 1226119X Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    2014
    Abstract
    In this paper, an analytical solution for steady creeping motion of viscoelastic drop falling through a viscous Newtonian fluid is presented. The Oldroyd-B model is used as the constitutive equation. The analytical solutions for both interior and exterior flows are obtained using the perturbation method. Deborah number and capillary numbers are considered as the perturbation parameters. The effect of viscoelastic properties on drop shape and motion are studied in detail. The previous empirical studies indicated that unlike the Newtonian creeping drop in which the drop shape is exactly spherical, a dimpled shape appears in viscoelastic drops. It is shown that the results of the present... 

    Microwave-induced Cannizzaro reaction over neutral γ-alumina as a polymeric catalyst

    , Article Reactive and Functional Polymers ; Volume 51, Issue 1 , 2002 , Pages 49-53 ; 13815148 (ISSN) Pourjavadi, A ; Soleimanzadeh, B ; Marandi, G. B ; Sharif University of Technology
    2002
    Abstract
    Microwave induced Cannizzaro reaction, which was performed in presence of neutral γ-alumina as a polymeric catalyst, was discussed. Cannizzaro reaction was carried out on alumina surface and other unknown products were also obtained. Solvent extraction method was utilized to isolate mild and selective benzyl alcohol and carboxylic acids  

    Feedback bit reduction for antenna selection methods in wireless systems

    , Article 2005 13th IEEE International Conference on Networks jointly held with the 2005 7th IEEE Malaysia International Conference on Communications, Kuala Lumpur, 16 November 2005 through 18 November 2005 ; Volume 1 , 2005 , Pages 229-233 ; 1424400007 (ISBN); 9781424400003 (ISBN) Shariatpanahi, P ; Babadi, B ; Hossein Khalaj, B ; Sharif University of Technology
    2005
    Abstract
    A well known method to reduce the intrinsic complexity of Multiple Input Multiple Output (MIMO) systems is to choose a subset of available antennas which have stronger links than the others, in order to perform the specified MIMO algorithm. The data resulted from the antenna selection process (at the receiver side) is sent back to the transmitter side via a feedback channel. There seems to be a need to reduce the number of feedack bits, specially when the number of antennas is not small. In this paper, we investigate the problem of reducing the number of feedback bits in antenna selection techniques. We've proposed two methods using vector quantization techniques to perform feedback bit...