Loading...
Search for: farshi--p
0.092 seconds

    On the power of the semi-separated pair decomposition

    , Article Computational Geometry: Theory and Applications ; Volume 46, Issue 6 , 2013 , Pages 631-639 ; 09257721 (ISSN) Abam, M. A ; Carmi, P ; Farshi, M ; Smid, M ; Sharif University of Technology
    2013
    Abstract
    A Semi-Separated Pair Decomposition (SSPD), with parameter s>1, of a set SâŠ"Rd is a set {(Ai,Bi)} of pairs of subsets of S such that for each i, there are balls DAi and DBi containing Ai and Bi respectively such that d(DAi,DBi)≥s×min(radius(DAi), radius(DBi)), and for any two points p,qâ̂̂S there is a unique index i such that pâ̂̂Ai and qâ̂̂Bi or vice versa. In this paper, we use the SSPD to obtain the following results: First, we consider the construction of geometric t-spanners in the context of imprecise points and we prove that any set SâŠ"Rd of n imprecise points, modeled as pairwise disjoint balls, admits a t-spanner with O(nlogn/(t-1)d) edges that can be computed in O(nlogn/(t-1)d)... 

    Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers

    , Article Applied Physics A: Materials Science and Processing ; Vol. 116, issue. 4 , 2014 , p. 2057-2063 Fotoohi, S ; Moravvej-Farshi, M. K ; Faez, R ; Sharif University of Technology
    2014
    Abstract
    Using density functional theory combined with non-equilibrium Green's function method, we have investigated the electronic and transport properties of graphenes defected by one and two carbon ad-dimers (CADs), placed parallel to the graphene lattice. Addition of these CADs to graphenes creates 3D paired pentagon-heptagon defects (3D-PPHDs). The band structure, density of states (DOS), quantum conductance, projected DOS, as well as the current-voltage characteristic per graphene super-cells containing each type of 3D-PPHD are calculated. The local strain introduced to graphene by 3D-PPHDs forces the C-bonds in the dimers to hybridize in sp 3-like rather than sp 2-like orbitals, creating... 

    Role of 3D-paired pentagon-heptagon defects in electronic and transport properties of zigzag graphene nanoribbons

    , Article Applied Physics A: Materials Science and Processing ; Volume 116, Issue 1 , July , 2014 , Pages 295-301 ; ISSN: 09478396 Fotoohi, S ; Moravvej Farshi, M. K ; Faez, R ; Sharif University of Technology
    2014
    Abstract
    Electronic and transport properties of 11 zigzag graphene nanoribbons (11-z-GNRs) with two types of 3D-paired pentagon-heptagon defects (3D-PPHDs) are studied using density functional theory combined with non-equilibrium Green's function method. The C ad-dimers that have been introduced to z-GNRs to form these 3D-PPHDs have induced local strains forcing the C-bonds in the ad-dimers to hybridize in sp3-like rather than sp2-like orbitals. Such transformations that cause extra electrons to accumulate around the 3D-PPHDs are responsible for the variations in the electronic and transport properties of the defected z-GNRs. Density of states (DOS) for 11-z-GNRs containing either type of 3D-PPHDs,... 

    Stability analysis in multiwall carbon nanotube bundle interconnects

    , Article Microelectronics Reliability ; Volume 52, Issue 12 , 2012 , Pages 3026-3034 ; 00262714 (ISSN) Haji Nasiri, S ; Faez, R ; Moravvej Farshi, M. K ; Sharif University of Technology
    2012
    Abstract
    Based on the transmission line model (TLM), we present an exact and general transfer function formula, useful for both single multiwall carbon nanotube (MWCNT) and MWCNT bundle interconnects. Using the standard parameters for 22-nm technology node we perform the Nyquist stability analysis, to investigate the dependence of the degree of relative stability for both single and bundle interconnects on the number of walls in each MWCNT its geometry and also on the bundle geometry. The numerical results, for 1- to 30-μm long interconnects composed of 3- to 7-wall-CNTs, show that by increasing the length or the outer shell diameter, both single and bundle interconnects become more stable. On the... 

    Time domain analysis of graphene nanoribbon interconnects based on transmission line model

    , Article Iranian Journal of Electrical and Electronic Engineering ; Volume 8, Issue 1 , Dec , 2012 , Pages 37-44 ; 17352827 (ISSN) Nasiri, S. H ; Moravvej-Farshi, M. K ; Faez, R ; Sharif University of Technology
    2012
    Abstract
    Time domain analysis of multilayer graphene nano ribbon (MLGNR) interconnects, based on transmission line modeling (TLM) using a six-order linear parametric expression, has been presented for the first time. We have studied the effects of interconnect geometry along with its contact resistance on its step response and Nyquist stability. It is shown that by increasing interconnects dimensions their propagation delays are increased and accordingly the system becomes relatively more stable. In addition, we have compared time responses and Nyquist stabilities of MLGNR and SWCNT bundle interconnects, with the same external dimensions. The results show that under the same conditions, the... 

    Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures

    , Article Modern Physics Letters B ; Volume 26, Issue 1 , 2012 ; 02179849 (ISSN) Nasiri, S. H ; Faez, R ; Moravvej Farshi, M. K ; Sharif University of Technology
    2012
    Abstract
    We present two compact analytic formulae for calculating the channel number in graphene nanoribbons (GNRs), in terms of GNRs' width and Fermi energy. Numerical data obtained from these analytic formulae fit those obtained numerically from the exact formula, with accuracies within 1%. Using appropriate fit parameters, the compact formulae are valid for zigzag, armchair-metallic, and armchair-semiconducting GNRs, at room, liquid nitrogen, and liquid helium temperatures (i.e. 300, 77 and 4.2 K)  

    Effects of Stone-Wales defect on the electronic and transport properties of bilayer armchair graphene nanoribbons

    , Article Superlattices and Microstructures ; Volume 100 , 2016 , Pages 739-748 ; 07496036 (ISSN) Gholami Rudi, S ; Faez, R ; Morawej Farshi, M. K ; Sharif University of Technology
    Academic Press  2016
    Abstract
    We report a first principles study on the electronic and transport properties of bilayer armchair graphene nanoribbons (BLAGNRs) containing Stone-Wales (SW) defect. It is shown that in the presence of SW defect in BLAGNRs, some electron localization occurs in defect atoms and degradation of transmission is observed in specific energy regions. The strength of electron localization is dependent on the symmetry of SW defect. In case of symmetric SW defect, stronger electron localization leads to sharper dip in its transmission spectrum in comparison with the broad dip in the transmission spectrum of the BLAGNR containing asymmetric SW defect. The effect of electron localization is also evident... 

    Stability analysis in graphene nanoribbon interconnects

    , Article IEEE Electron Device Letters ; Volume 31, Issue 12 , 2010 , Pages 1458-1460 ; 07413106 (ISSN) Haji Nasiri, S ; Moravvej Farshi, M. K ; Faez, R ; Sharif University of Technology
    2010
    Abstract
    We present a Nyquist stability criterion based on transmission line modeling for graphene nanoribbon (GNR) interconnects. This is the first instance that such an analysis has been presented for GNR, so far. In this analysis, the dependence of the degree of relative stability for multilayer GNR (MLGNR) interconnects on the geometry of each ribbon has been acquired. It is shown that, increasing the length and width, MLGNR interconnects become more stable  

    A seamless-pitched graphene nanoribbon field effect transistor

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 74 , November , 2015 , Pages 414-420 ; 13869477 (ISSN) Haji Nasiri, S ; Moravvej Farshi, M. K ; Faez, R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This paper proposes a graphene nanoribbon field effect transistor (GNRFET) consisting of pitched semiconducting GNRs as the channels that are connected to the metallic graphene source/drain in a seamless fashion. We obtained the diagrams for frequency bandwidths, step time responses, and Nyquist stability for the seamless pitched GNRFET (SP-GNRFET) with a channel having 100 pitched GNRs at 10 nm pitch in the common source configuration with various dimensions of the GNRs. The aforementioned diagrams were also obtained for the pitched carbon nanotube field effect transistor (CNTFET) with a channel having 100 pitched CNTs at 10 nm pitch in the common source configuration with various... 

    Triple-tunnel junction single electron transistor (TTJ-SET)

    , Article Modern Physics Letters B ; Volume 25, Issue 17 , 2011 , Pages 1487-1501 ; 02179849 (ISSN) Shahhoseini, A ; Saghafi, K ; Moravvej Farshi, M. K ; Faez, R ; Sharif University of Technology
    2011
    Abstract
    We propose a triple-tunnel junction single electron transistor (TTJ-SET). The proposed structure consists of a metallic quantum-dot island that is capacitive coupled to a gate contact and surrounded by three tunnel junctions. To the best of our knowledge, this is the first instance of introducing this new structure that is suitable for both digital and analog applications. I-V D characteristics of the proposed TTJ-SET, simulated by a HSPICE macro model for various gate voltages, are in excellent agreement with those obtained by SIMON, which is a Monte-Carlo based simulator. We show how one can design a digital inverter by using a single TTJ-SET. We also show that, under suitable conditions,... 

    Design and Optimization of Carbon Capture System from Exhaust Gases in the Process Industries

    , M.Sc. Thesis Sharif University of Technology Farshi Taghavi, Mahdis (Author) ; Rashtchian, Davood (Supervisor) ; Seif, Shayan (Co-Supervisor)
    Abstract
    Carbon dioxide is one of the main geenhouse gases emitted from factories as well as transportation vehicles that adversely affect the atmosphere and cause global warming. Among the proposed solutions to reduce carbon dioxide in the atmosphere, carbon dioxide separation would be the most viable medium-term approach. However, the high cost of carbon dioxide separation prevents the development of carbon dioxide absorption technologies. Therefore, it seems that integrating separation and production processes is the most efficient way to save energy and reduce carbon emissions. This method decrease a high proportion of the energy consumption in upstream operations (carbon dioxide removal,... 

    Using superlattice structure in the source of GNRFET to improve its switching performance

    , Article IEEE Transactions on Electron Devices ; Volume 67, Issue 3 , 2020 , Pages 1334-1339 Behtoee, B ; Faez, R ; Shahhoseini, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Our aim is to improve the switching performance of the graphene nanoribbon field-effect transistors (GNRFETs), exploiting the concept of energy filtering. Within the proposed scheme, a superlattice (SL) structure is used in the source of the transistor for filtering high-energy electron tail by engineering the density of states (DOS). According to simulation results, this can significantly decrease the OFF-current and the subthreshold swing (SS). A comparison of the proposed device with a conventional GNRFET and a graphene nanoribbon (GNR) tunneling field-effect transistor (GNRTFET) demonstrates a significant improvement. Therefore, a typical SL-GNRFET can reduce the average and the minimum... 

    GNRFET with superlattice source, channel, and drain: SLSCD-GNRFET

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 131 , 2021 ; 13869477 (ISSN) Behtoee, B ; Faez, R ; Shahhoseini, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We are proposing a next-generation graphene nanoribbon field-effect transistor (GNRFET) with superlattice source, channel, and drain (SLSCD-GNRFET), with significantly improved switching performance. The presence of superlattice in each region is for energy filtering. The simulation results indicate that the addition of an appropriate superlattice in the channel region, it reduces the subthreshold swing. Also, using proper superlattice in the drain region leads to an increase of more than a decade in the ION/IOFF ratio by intensely reducing the OFF-current. These improvements make the proposed transistor potentially suitable for the next-generation logical digital applications. Comparison of... 

    Modeling of a vertical tunneling transistor based on Gr-hBN- χ 3borophene heterostructure

    , Article Journal of Applied Physics ; Volume 132, Issue 3 , 2022 ; 00218979 (ISSN) Abbasi, R ; Faez, R ; Horri, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    We present a computational study on the electrical behavior of the field-effect transistor based on vertical graphene-hBN- χ 3 borophene heterostructure and vertical graphene nanoribbon-hBN- χ 3 borophene nanoribbon heterostructure. We use nonequilibrium the Green function formalism along with an atomistic tight-binding (TB) model. The TB parameters are calculated by fitting tight-binding band structure and first-principle results. Also, electrical characteristics of the device, such as ION/IOFF ratio, subthreshold swing, and intrinsic gate-delay time, are investigated. We show that the increase of the hBN layer number decreases subthreshold swing and degrades the intrinsic gate-delay time.... 

    Nationwide prediction of drought conditions in Iran based on remote sensing data

    , Article IEEE Transactions on Computers ; Vol. 63, issue. 1 , Jan , 2014 , p. 90-101 ; 0018-9340 Jalili, M ; Gharibshah, J ; Ghavami, S. M ; Beheshtifar, M ; Farshi, R ; Sharif University of Technology
    2014
    Abstract
    Iran is a country in a dry part of the world and extensively suffers from drought. Drought is a natural, temporary, and iterative phenomenon that is caused by shortage in rainfall, which affects people's health and well-being adversely as well as impacting the society's economy and politics with far-reaching consequences. Information on intensity, duration, and spatial coverage of drought can help decision makers to reduce the vulnerability of the drought-affected areas, and therefore, lessen the risks associated with drought episodes. One of the major challenges of modeling drought (and short-term forecasting) in Iran is unavailability of long-term meteorological data for many parts of the... 

    Electronic features of rippled graphene

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering ; 2012 , Pages 170-172 ; 9781467311489 (ISBN) Haji Nasiri, S ; Moravvej Farshi, M. K ; Faez, R ; Bajelan, A ; Sharif University of Technology
    2012
    Abstract
    Using tight binding theory the effect of topological ripples on the electronic band structure, density of states (DOS), and Fermi velocity of graphene are studied. The results show that by an increase in the ripple height the graphene Fermi velocity decreases and its DOS increases.- Moreover, we show that an increase in the ripple period causes the graphene band gap and DOS to decrease and its Fermi velocity to increase  

    Effect of Stone-Wales defect on an armchair graphene nanoribbon-based photodetector

    , Article Superlattices and Microstructures ; Volume 130 , 2019 , Pages 127-138 ; 07496036 (ISSN) Gholami Rudi, S ; Faez, R ; Moravvej Farshi, M. K ; Saghafi, K ; Sharif University of Technology
    Academic Press  2019
    Abstract
    The effect of Stone-Wales (SW) defect on the performance of an armchair graphene nanoribbon (AGNR)-based photodetector is studied. To model the SW defect two new tight-binding (TB) parameters are proposed that provide results that are in good agreement with density functional theory calculations. SW defect is introduced in different locations in the channel of the AGNR detector and the photocurrent, quantum efficiency and responsivity of defected structures are calculated using TB approximation and non-equilibrium Green's function formalism. By inspecting the photo-generated hole density in different points of the channel, the way that photocurrent is affected by SW defect in different... 

    Low-noise differential transimpedance amplifier structure based on capacitor cross-coupled gm-boosting scheme

    , Article Microelectronics Journal ; Volume 39, Issue 12 , 2008 , Pages 1843-1851 ; 00262692 (ISSN) Jalali, M ; Nabavi, A ; Moravvej Farshi, M. K ; Fotowat Ahmady, A ; Sharif University of Technology
    2008
    Abstract
    This paper presents a capacitor cross-coupled gm-boosting scheme for differential implementation of common-gate transimpedance amplifier (CG-TIA). A differential transimpedance amplifiers (DTIA) is designed by this scheme using two modified floating-biased CG stage with improved low corner frequency. Despite conventional methods for single-ended to differential conversion that increase the power and the noise for the same gain, the new DTIA gives a higher gain and hence reduces the input-referred noise power. Design of the DTIA circuit using 0.13 μm CMOS technology illustrates near 1.7 dB improvement in the circuit sensitivity and 5.2 dB enhancement in transimpedance gain compared to its... 

    Numerical investigation on the temperature dependence of the cylindrical-gate-all-arounD Si-NW-FET

    , Article Modern Physics Letters B ; Volume 25, Issue 29 , 2011 , Pages 2269-2278 ; 02179849 (ISSN) Sedigh Zyiabari, S. A ; Saghafi, K ; Faez, R ; Moravvej-Farshi, M. K ; Sharif University of Technology
    2011
    Abstract
    We report the results of our numerical investigation on the temperature dependence of the characteristics of the cylindrical gate-all-around Si nanowire field effect transistor (Si-NW-FET). Assuming the effect of temperature on the energy band structure of Si just like the effect of strain, we simulate the transistor characteristics at various temperatures (50 K ≤ T ≤ 300 K). In this investigation, we demonstrate the temperature dependence of the transistor sub-threshold swing and the threshold voltage are both linear functions of the temperature, represented by 61.5 × (T/300) + 63.4 (mV/decade) and 220140 × (T/300-1) (mV). By calculating the IDS - T characteristics for VDS = 0.4 V and... 

    Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications

    , Article Polymer Engineering and Science ; Volume 62, Issue 9 , 2022 , Pages 2741-2749 ; 00323888 (ISSN) Farshi, P ; Salarian, R ; Rabiee, M ; Alizadeh, S ; Gholipourmalekabadi, M ; Ahmadi, S ; Rabiee, N ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Silk fibroin (SF) has been broadly applied in wound dressing fabrication because of its proper features for wound healing. In this work, we developed a carboxymethyl cellulose (CMC)/gelatin blend film with different concentrations of glycerol, and modified the optimized film with an SF layer through electrospinning process. Tensile strength and cell viability evaluation of blend films demonstrated that the glycerol content of 3% could be suitable as the substrate layer for the two-layer wound dressing. The morphology of the blend film and electrospun nanofibers was obtained from scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). It concluded that...