Loading...
Search for: he--x
0.064 seconds

    Simulations of extrusion 3d printing of chitosan hydrogels

    , Article Applied Sciences (Switzerland) ; Volume 12, Issue 15 , 2022 ; 20763417 (ISSN) Ramezani, H ; Mohammad Mirjamali, S ; He, Y ; Sharif University of Technology
    MDPI  2022
    Abstract
    Extrusion-based three-dimensional (3D) printing has recently become a major field that provides significant benefits, as it is principally employed to fabricate 3D scaffolds, exploiting soft biomaterials. The 3D printing hydrogel-based ink requires crucial properties, such as printability and printing fidelity to fabricate the appropriate structure. However, it typically uses trial and error techniques to achieve a three-dimensional structure, which wastes material and time. This study employed multiphysics simulation to predicate the potential printability of chitosan hydrogel as a desirable biomaterial used in tissue engineering. The flow was presumed to be laminar and two-phased in the... 

    The change in the chemical composition and toughness of API 5L-X70 welds by addition of titanium

    , Article International Journal of Modern Physics B ; Volume 23, Issue 6-7 , 2009 , Pages 1209-1216 ; 02179792 (ISSN) Beidokhti, B ; Koukabi, A. H ; Dolati, A ; He, P ; Sharif University of Technology
    2009
    Abstract
    The objective of this work was to study the influence of titanium variations on the API 5L-X70 steel weld metal properties. The relationship between microstructure and toughness of the weld deposit was studied by means of full metallographic, longitudinal tensile and Charpy-V notch tests on the specimens cut transversely to the weld beads. The best combination of microstructure and impact properties was obtained in the range of 0.02-0.05% titanium. By further increasing of titanium content, the microstructure was changed from a mixture of acicular ferrite, grain-boundary ferrite, Widmanstätten ferrite to a mixture of acicular ferrite, grain-boundary ferrite, bainite and ferrite with M/A... 

    Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium

    , Article Journal of Electroanalytical Chemistry ; Volume 589, Issue 1 , 2006 , Pages 96-105 ; 15726657 (ISSN) Yousefpour, M ; Afshar, A ; Yang, X ; Li, X ; Yang, B ; Wu, Y ; Chen, J ; Zhang, X ; Sharif University of Technology
    Elsevier  2006
    Abstract
    Hydroxyapatite (HA) coatings were deposited on commercially pure titanium plates using a hydrothermal-electrochemical deposition method in an electrolyte containing calcium and phosphate ions. The deposition conditions used in this study were the followings: electrolyte temperature (33-80 °C), current density (1-8 mA/cm2), and deposition time (10-120 min). Needle-like and granular crystals of apatite coating were created with different concentrations of calcium (0.0021-0.042 M) and phosphate (0.00125-0.025 M) salts. The size of HA crystals of the coating was considerably changed with different concentration of calcium and phosphate salts, temperature of the electrolyte, and deposition time.... 

    Seawater desalination via waste heat recovery from generator of wind turbines: How economical is it to use a hybrid hdh-ro unit?

    , Article Sustainability (Switzerland) ; Volume 13, Issue 14 , 2021 ; 20711050 (ISSN) Rostamzadeh, H ; Rostami, S ; Amidpour, M ; He, W ; Han, D ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Over recent years, the concept of waste heat recovery from the generators of wind turbines for driving a thermal-driven desalination system was introduced, and its advantages were highlighted. However, any selection of a bottoming thermal-driven desalination system among different existing technologies should be taken under consideration before making an ultimate recommendation. Unfortunately, no comprehensive comparison is available in the literature to compare the performance as well as the cost aspects of using the waste thermal energy of the generator of a wind turbine for desalinating seawater, comparing them with those of a layout where the power of the wind turbine is directly... 

    Non-polynomial framework for bending responses of the multi-scale hybrid laminated nanocomposite reinforced circular/annular plate

    , Article Thin-Walled Structures ; Volume 166 , 2021 ; 02638231 (ISSN) He, X ; Ding, J ; Habibi, M ; Safarpour, H ; Safarpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This survey addresses the non-polynomial framework for bending responses of three-phase multi-scale hybrid laminated nanocomposite (MHLNC) reinforced circular/annular plates (MHLNCRCP/ MHLNCRAP) based upon the three-dimensional theory of elasticity for various sets of boundary conditions. The sandwich structure with two, three, five, and seven layers is modeled using compatibility conditions. The state-space based differential quadrature method (SS-DQM) is presented to examine the bending behavior of MHLNCRCP/ MHLNCRAP by considering various boundary conditions. Halpin–Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale... 

    N-Type conductive small molecule assisted 23.5% efficient inverted perovskite solar cells

    , Article Advanced Energy Materials ; Volume 12, Issue 34 , 2022 ; 16146832 (ISSN) Cao, Q ; Li, Y ; Zhang, Y ; Zhao, J ; Wang, T ; Yang, B ; Pu, X ; Yang, J ; Chen, H ; Chen, X ; Li, X ; Ghasemi, S ; Salari, H ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Because of the compatibility with tandem devices and the ability to be manufactured at low temperatures, inverted perovskite solar cells have generated far-ranging interest for potential commercial applications. However, their efficiency remains inadequate owing to various traps in the perovskite film and the restricted hole blocking ability of the electron transport layer. Thus, in this work, a wide-bandgap n-type semiconductor, 4,6-bis(3,5-di(pyridin-4-yl)phenyl)-2-phenylpyrimidine (B4PyPPM), to modify a perovskite film via an anti-solvent method is introduced. The nitrogen sites of pyrimidine and pyridine rings in B4PyPPM exhibit strong interactions with the undercoordinated lead ions in... 

    Application of soft computing models in streamflow forecasting

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 172, Issue 3 , 2019 , Pages 123-134 ; 17417589 (ISSN) Adnan, R. M ; Yuan, X ; Kisi, O ; Yuan, Y ; Tayyab, M ; Lei, X ; Sharif University of Technology
    ICE Publishing  2019
    Abstract
    The accuracy of five soft computing techniques was assessed for the prediction of monthly streamflow of the Gilgit river basin by a cross-validation method. The five techniques assessed were the feed-forward neural network (FFNN), the radial basis neural network (RBNN), the generalised regression neural network (GRNN), the adaptive neuro fuzzy inference system with grid partition (Anfis-GP) and the adaptive neuro fuzzy inference system with subtractive clustering (Anfis-SC). The interaction between temperature and streamflow was considered in the study. Two statistical indexes, mean square error (MSE) and coefficient of determination (R2), were used to evaluate the performances of the... 

    Machining precedence of 21/2D interacting features in a feature-based data model

    , Article Journal of Intelligent Manufacturing ; Volume 22, Issue 2 , 2011 , Pages 145-161 ; 09565515 (ISSN) Mokhtar, A ; Xu, X ; Sharif University of Technology
    2011
    Abstract
    In process planning, determining feature's machining precedence is an essential step. The task becomes more difficult if features interact with each other, in which case the feature precedence information may suggest multiple machining sequences of the features. This paper considers interacting features in a feature-based model for process planning tasks. For each feature, precedence information is generated considering both roughing and finishing operations. A rule-based system is developed and implemented based on the information about machining precedence of the interacting features. The STEP-NC data model is used as the underlying data model. This model is object-oriented and compliant... 

    Fast algorithm for k-truss discovery on public-private graphs

    , Article 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, 10 August 2019 through 16 August 2019 ; Volume 2019-August , 2019 , Pages 2258-2264 ; 10450823 (ISSN); 9780999241141 (ISBN) Ebadian, S ; Huang, X ; Sharif University of Technology
    International Joint Conferences on Artificial Intelligence  2019
    Abstract
    In public-private graphs, users share one public graph and have their own private graphs. A private graph consists of personal private contacts that only can be visible to its owner, e.g., hidden friend lists on Facebook and secret following on Sina Weibo. However, existing public-private analytic algorithms have not yet investigated the dense subgraph discovery of k-truss, where each edge is contained in at least k − 2 triangles. This paper aims at finding k-truss efficiently in public-private graphs. The core of our solution is a novel algorithm to update k-truss with node insertions. We develop a classification-based hybrid strategy of node insertions and edge insertions to incrementally... 

    Robust D-stability test of LTI general fractional order control systems

    , Article IEEE/CAA Journal of Automatica Sinica ; Volume 7, Issue 3 , May , 2020 , Pages 853-864 Mohsenipour, R ; Liu, X ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This work deals with the robust D-stability test of linear time-invariant ( LTI ) general fractional order control systems in a closed loop where the system and - or the controller may be of fractional order. The concept of general implies that the characteristic equation of the LTI closed loop control system may be of both commensurate and non-commensurate orders, both the coefficients and the orders of the characteristic equation may be nonlinear functions of uncertain parameters, and the coefficients may be complex numbers. Some new specific areas for the roots of the characteristic equation are found so that they reduce the computational burden of testing the robust D-stability. Based on... 

    Overcome low intrinsic conductivity of Niox through triazinyl modification for highly efficient and stable inverted perovskite solar cells

    , Article Solar RRL ; Volume 6, Issue 9 , 2022 ; 2367198X (ISSN) Yang, J ; Wang, T ; Li, Y ; Pu, X ; Chen, H ; Li, Y ; Yang, B ; Zhang, Y ; Zhao, J ; Cao, Q ; Chen, X ; Ghasemi, S ; Hagfeldt, A ; Li, X ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Nickel oxide (NiOx) is a promising hole transport material in inverted organic-inorganic metal halide perovskite solar cells. However, its low intrinsic conductivity hinders its further improvement in device performance. Here, we employ a trimercapto-s-triazine trisodium salt (TTTS) as a chelating agent of Ni2+ in the NiOx layer to improve its conductivity. Due to the electron-deficient triazine ring, the TTTS complexes with Ni2+ in NiOx via a strong Ni2+-N coordination bond and increases the ratio of Ni3+:Ni2+. The increased Ni3+ concentration adjusts the band structure of NiOx, thus enhancing hole density and mobility, eventually improving the intrinsic conductivity of NiOx. As a result,... 

    Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks

    , Article IEEE Transactions on Mobile Computing ; Volume 15, Issue 7 , 2016 , Pages 1699-1713 ; 15361233 (ISSN) Shu, Y ; Yousefi, H ; Cheng, P ; Chen, J ; Gu, Y. J ; He, T ; Shin, K. G ; Sharif University of Technology
    Institute of electrical and electronics engineers Inc  2016
    Abstract
    Limited energy in each node is the major design constraint in wireless sensor networks (WSNs). To overcome this limit, wireless rechargeable sensor networks (WRSNs) have been proposed and studied extensively over the last few years. In a typical WRSN, batteries in sensor nodes can be replenished by a mobile charger that periodically travels along a certain trajectory in the sensing area. To maximize the charged energy in sensor nodes, one fundamental question is how to control the traveling velocity of the charger. In this paper, we first identify the optimal velocity control as a key design objective of mobile wireless charging in WRSNs. We then formulate the optimal charger velocity... 

    Two-level distributed demand-side management using the smart energy hub concept

    , Article 10th International Conference on Applied Energy, ICAE 2018, 22 August 2018 through 25 August 2018 ; Volume 158 , 2019 , Pages 3052-3063 ; 18766102 (ISSN) Sobhani, O ; Sheykhha, S ; Azimi, M. R ; Madlener, R ; Yang H. X ; Li H ; Chen X ; Yan J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Demand-side management (DSM) and the integration of the energy hub concept as a main part of future energy networks play an essential role in the process of improving the efficiency and reliability of the power grids. In this paper, we consider a smart multi-carrier energy system in which users are equipped with energy storage and conversion devices (i.e., an energy hub). Users intend to reduce their energy payment by shifting energy consumption to off-peak hours and switching between different energy carriers. This system enables both users with shiftable loads and must-run loads to be active in a DSM program. We apply game theory to formulate the energy consumption and conversion for a... 

    Optimizing dynamical network structure for pinning control

    , Article Scientific Reports ; Volume 6 , 2016 ; 20452322 (ISSN) Orouskhani, Y ; Jalili, M ; Yu, X ; Sharif University of Technology
    Nature Publishing Group  2016
    Abstract
    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model... 

    Dealing with feature interactions for prismatic parts in STEP-NC

    , Article Journal of Intelligent Manufacturing ; Volume 20, Issue 4 , 2009 , Pages 431-445 ; 09565515 (ISSN) Mokhtar, A ; Xu, X ; Lazcanotegui, I ; Sharif University of Technology
    2009
    Abstract
    Determining the precedence of machining features is a critical issue in feature-based process planning. It becomes more complex when geometric interaction occurs between machining features. STEP-NC, the extension of STEP (ISO 10303) standard developed for CNC controllers, is a feature-based data model. It represents all the geometric and topological product data minus feature interactions. In this paper, machining precedence of interactive and non-interactive STEP-NC features is discussed. Local and global precedence of machining features are defined on the basis of geometric constraints, such as geometric interaction of features and feature approach face and technological constraint such as... 

    Modeling of a glucose sensitive composite membrane for closed-loop insulin delivery

    , Article Journal of Membrane Science ; Volume 335, Issue 1-2 , 2009 , Pages 21-31 ; 03767388 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2009
    Abstract
    A theoretical model was developed to describe a dynamic process involving an enzymatic reaction and diffusion of reactants and product inside glucose sensitive composite membrane. The composite membrane consisted of nanoparticles of a weakly acidic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. Time- and position-dependent diffusivity of involved species was considered in the model. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of pH, species concentrations, volume fraction of swollen gel, polymer and water-filled space, as well as solute diffusivity inside the membrane were predicted by the model as a function... 

    Drug release from ion-exchange microspheres: Mathematical modeling and experimental verification

    , Article Biomaterials ; Volume 29, Issue 11 , 2008 , Pages 1654-1663 ; 01429612 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2008
    Abstract
    This paper presents for the first time a mathematical model for a mechanism of controlled drug release involving both ion exchange and transient counter diffusion of a drug and counterions. Numerical analysis was conducted to study the effect of different factors on drug release kinetics including environmental condition, material properties, and design parameters. The concentration profiles of counterions and drug species, the moving front of ion exchange, and three distinct regions inside a microsphere, namely unextracted region, ion-exchange region and drug diffusion region, were revealed by model prediction. The numerical results indicated that the rate of drug release increased with an... 

    Active flow control of a wing section in stall flutter by dielectric barrier discharge plasma actuators

    , Article Physics of Fluids ; Volume 34, Issue 7 , 2022 ; 10706631 (ISSN) Hajipour, M ; Ebrahimi, A ; Amandolese, X ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    This paper investigates the potential of using an active flow control technique to modify stall flutter oscillations of a NACA (National Advisory Committee for Aeronautics) 0015 wing section. Wind tunnel experiments have been performed with a test-rig that provides the elastic degree of freedom in pitch. Measurements of the clean airfoil are taken at preset angles of θ 0 = 6 ° - 12 °, and for Reynolds numbers of R e c = 6.2 × 10 4 - 1.25 × 10 5, which reveal the dependency of the stall flutter oscillations to Rec and θ0. Then, flow control experiments are carried out at θ 0 = 10 ° and R e c = 1.04 × 10 5. Two dielectric barrier discharge plasma actuators have been employed simultaneously to... 

    Modeling of a cationic glucose-sensitive membrane with consideration of oxygen limitation

    , Article Journal of Membrane Science ; Volume 254, Issue 1-2 , 2005 , Pages 119-127 ; 03767388 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2005
    Abstract
    A theoretical model concerning simultaneous diffusion and reaction was developed to describe the steady state behavior of a cationic glucose-sensitive membrane with consideration of oxygen limitation and swelling-dependent diffusivities of involved species inside the membrane. Donnan equilibrium was used to find concentrations of buffer ions inside the membrane. The profiles of species concentrations, pH, polymer volume fraction and solute diffusivity inside the membrane were predicted by the model in response to step changes of glucose concentration in the external solution. The influence of various factors on the responsiveness of the membrane was analyzed using the model. The results... 

    Drug loading onto ion-exchange microspheres: Modeling study and experimental verification

    , Article Biomaterials ; Volume 27, Issue 19 , 2006 , Pages 3652-3662 ; 01429612 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2006
    Abstract
    A new mathematical model was developed and an exact analytical solution without approximations of previous work was derived for the description of the kinetics and equilibrium characteristics of drug loading from a finite external solution onto ion-exchange microspheres. The influence of important parameters pertinent to material properties and loading conditions on the kinetics, efficiency, and equilibrium of drug loading was analyzed using the developed model and equations. The numerical results showed that the rate of drug loading increased with increasing initial drug concentration in the solution or with the relative volume of the external solution and the microsphere. The maximum...