Loading...
Search for: jafari-gahraz--r
0.1 seconds

    Wind tunnel study of the effect zigzag tape on aerodynamics performance of a wind turbine airfoil

    , Article Journal of Advanced Research in Fluid Mechanics and Thermal Sciences ; Volume 41, Issue 1 , 2018 , Pages 1-9 ; 22897879 (ISSN) Jafari Gahraz, R ; Lazim, T.M ; Darbandi, M ; Sharif University of Technology
    Penerbit Akademia Baru  2018
    Abstract
    A wind tunnel study was performed on the FFA-W-3-270 airfoil, which form a segment of a 1.25 MW wind turbine blade, to examine the effect of fixed roughness height and position using a zigzag tape boundary layer trip strip. Tests were conducted at a Reynolds number of 1×106 over a wide range of angles of attack. The zigzag tape, as an artificial roughness device, not only triggers a premature transition in the flow whereby laminar flow regimes change to turbulent, but also increases the momentum thickness of the turbulent boundary layer and change the airfoil camber. The 60° zigzag tape of 0.5 mm and 1 mm height was placed on the suction side of the airfoil at different chord wise locations.... 

    Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation

    , Article Applied Thermal Engineering ; Volume 161 , 2019 ; 13594311 (ISSN) Jafari Mosleh, H ; Ahmadi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One of the efficient solar energy harvesting technics is the parabolic trough concentrated solar power plant. However, if the concentrated solar power plant were not equipped with a storage system, the power plant capacity factor would be deficient. Latent thermal energy storage system using phase change material (PCM) is a high energy density storage system to provide durable energy with a constant temperature. In this study, first, a dynamic analysis is performed implementing TRNSYS software on the parabolic trough concentrated solar power plant located in Shiraz, Iran. Consequently, this system is assisted by the latent thermal energy storage system to improve its performance and capacity... 

    Numerical modeling of water oil two-phase flow during counter-current spontaneous imbibition in porous media at pore-scale

    , Article Petroleum Science and Technology ; Volume 38, Issue 24 , October , 2020 , Pages 1040-1053 Jafari, I ; Rokhforouz, M. R ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In this work, phase-field method is used to develop a numerical model to simulate two-phase flow through a heterogeneous fractured porous medium. Various sensitivity analyses were performed to assess the impact of wettability, fracture aperture, interfacial tension, and water injection velocity on the displacement process. It was observed that the water mass imbibed into the matrix block varies linearly with time before the water front meets the outlet, known as “filling fracture” regime, which is captured for the first time in a numerical study. It is revealed that increasing the fracture aperture reduces water breakthrough time and oil recovery. © 2020 Taylor & Francis Group, LLC  

    Analytical solution for the free vibration analysis of delaminated timoshenko beams

    , Article The Scientific World Journal ; Volume 2014 , 2014 ; ISSN: 1537744X Jafari Talookolaei, R. A ; Abedi, M ; Sharif University of Technology
    2014
    Abstract
    This work presents a method to find the exact solutions for the free vibration analysis of a delaminated beam based on the Timoshenko type with different boundary conditions. The solutions are obtained by the method of Lagrange multipliers in which the free vibration problem is posed as a constrained variational problem. The Legendre orthogonal polynomials are used as the beam eigenfunctions. Natural frequencies and mode shapes of various Timoshenko beams are presented to demonstrate the efficiency of the methodology  

    DPD simulation of non-Newtonian electroosmotic fluid flow in nanochannel

    , Article Molecular Simulation ; Volume 44, Issue 17 , 2018 , Pages 1444-1453 ; 08927022 (ISSN) Jafari, S ; Zakeri, R ; Darbandi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    We use the dissipative particle dynamics (DPD) method to simulate the non-Newtonian electroosmotic flow (EOF) through nanochannels. Contrary to a large amount of past computational efforts dedicated to the study of EOF profile, this work pays attention to the EOF of non-Newtonian fluids, which has been rarely touched in past publications. Practically, there are many MEMS/NEMS devices, in which the EOF behaviour should be treated assuming both non-continuum and non-Newtonian conditions. Therefore, our concern in this work is to simulate the EOF through nanochannels considering both non-Newtonian fluid properties and non-continuum flow conditions. We have chosen DPD as our working tool because... 

    Analysis of porosity distribution of large-scale porous media and their reconstruction by Langevin equation

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 83, Issue 2 , February , 2011 ; 15393755 (ISSN) Jafari, G. R ; Sahimi, M ; Rasaei, M. R ; Tabar, M. R. R ; Sharif University of Technology
    2011
    Abstract
    Several methods have been developed in the past for analyzing the porosity and other types of well logs for large-scale porous media, such as oil reservoirs, as well as their permeability distributions. We developed a method for analyzing the porosity logs φ(h) (where h is the depth) and similar data that are often nonstationary stochastic series. In this method one first generates a new stationary series based on the original data, and then analyzes the resulting series. It is shown that the series based on the successive increments of the log y(h)=φ(h+δh)-φ(h) is a stationary and Markov process, characterized by a Markov length scale hM. The coefficients of the Kramers-Moyal expansion for... 

    Simulation of a carbon nanotube field effect transistor with two different gate insulators

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 2332-2340 ; 10263098 (ISSN) Fallah, M ; Faez, R ; Jafari, A. H ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this paper, a novel structure for MOSFET like CNTFETs (MOSCNTs) is proposed, combining the advantages of both high and low dielectrics to improve output characteristics. In this structure, the gate dielectric at the drain side is selected from a material with low dielectric constant to form smaller capacitances, while a material with high dielectric constant is selected at the source side to improve on current and reduce leakage current. The new structure is simulated based on the Schrödinger-Poisson formulation. Obtained results show that the proposed configuration has lower off and higher on current in comparison with low-k MOSCNTs. Also, using a two-dimensional model, a wide range of... 

    Topological phase diagram of the disordered 2XY model in presence of generalized Dzyaloshinskii-Moriya interaction

    , Article Journal of Physics Condensed Matter ; Volume 32, Issue 1 , 2020 Habibi, A ; Ghadimi, R ; Jafari, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    The topological index of a system determines its edge physics. However, in situations such as strong disorder where due to level repulsion the spectral gap closes, the topological indices are not well-defined. In this paper, we show that the localization length of zero modes determined by the transfer matrix method reveals much more information than the topological index. The localization length can provide not only information about the topological index of the Hamiltonian itself, but it can also provide information about the topological indices of the 'relative' Hamiltonians. As a case study, we study a generalized XY model (2XY model) further augmented by a generalized... 

    Modeling of forced vibration of marine structural systems under dynamic loads of sea waves

    , Article 18th Australasian Coastal and Ocean Engineering Conference 2007, COASTS 2007 and the 11th Australasian Port and Harbour Conference 2007, PORTS 2007, Melbourne, VIC, 18 July 2007 through 20 July 2007 ; 2007 , Pages 560-565 ; 9781622764280 (ISBN) Jafari, A ; Kanani, A ; Farahani, R. J ; Sharif University of Technology
    2007
    Abstract
    Predicting the reaction and function of marine structures towards sea waves, is of significant importance in the design of them. There are some uncertain parameters which can be optimized to increase safety factors as well as to decrease the costs. Knowing the maximum oscillation of marine structures due to dynamic forces will play a great role on structures' safe design. The objective of this paper is to employ a reliable numerical technique to analyze the interaction between marine structures and sea waves. Simulink is an object oriented dynamic simulation package. It can develop new analysis tools aimed at a better understanding and prediction of the physics that governs the behavior of... 

    Low flow rate spray cooling by a flow blurring injector

    , Article International Communications in Heat and Mass Transfer ; Volume 122 , 2021 ; 07351933 (ISSN) Jafari, M ; Jowkar, S ; Morad, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Spray cooling characteristics of a flow blurring injector are investigated experimentally. Variations of the flow rates and the distance from the nozzle to the test surface are examined in terms of the cooling heat flux. The liquid flow rate is varied from 200 to 1200 mL/h. The effect of the air flow rate from 6 to 18 L/min is also studied and heat transfer coefficients are obtained. Depending on different effective parameters, the maximum cooling heat flux is measured between 61 and 193 W/cm2. Owing to formation of fine droplets at higher air flow rates, the maximum cooling heat flux is improved by about 60%. The present data is generated for a flow blurring type of injector to have four... 

    SELM: Software engineering of machine learning models

    , Article 20th International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques, SoMeT 2021, 21 September 2021 through 23 September 2021 ; Volume 337 , 2021 , Pages 48-54 ; 09226389 (ISSN); 9781643681948 (ISBN) Jafari, N ; Besharati, M. R ; Hourali, M ; Sharif University of Technology
    IOS Press BV  2021
    Abstract
    One of the pillars of any machine learning model is its concepts. Using software engineering, we can engineer these concepts and then develop and expand them. In this article, we present a SELM framework for Software Engineering of machine Learning Models. We then evaluate this framework through a case study. Using the SELM framework, we can improve a machine learning process efficiency and provide more accuracy in learning with less processing hardware resources and a smaller training dataset. This issue highlights the importance of an interdisciplinary approach to machine learning. Therefore, in this article, we have provided interdisciplinary teams' proposals for machine learning. © 2021... 

    Scaling behavior of earthquakes' inter-events time series

    , Article Central European Journal of Physics ; Volume 7, Issue 3 , 2009 , Pages 620-623 ; 18951082 (ISSN) Shadkhoo, S ; Ghanbarnejad, F ; Jafari, G. R ; Rahimi Tabar, M. R ; Sharif University of Technology
    2009
    Abstract
    In this paper, we investigate the statistical and scaling properties of the California earthquakes' inter-events over a period of the recent 40 years. To detect long-term correlations behavior, we apply detrended fluctuation analysis (DFA), which can systematically detect and overcome nonstationarities in the data set at all time scales. We calculate for various earthquakes with magnitudes larger than a given M. The results indicate that the Hurst exponent decreases with increasing M; characterized by a Hurst exponent, which is given by, H = 0:34 + 1:53/M, indicating that for events with very large magnitudes M, the Hurst exponent decreases to 0:50, which is for independent events. © Versita... 

    Discrimination of Sol and Gel states in an aging clay suspension

    , Article Chemical Physics ; Volume 423 , September , 2013 , Pages 167-172 ; 03010104 (ISSN) Shayeganfar, F ; Movahed, M. S ; Jafari, G. R ; Sharif University of Technology
    2013
    Abstract
    The dynamical scattered light intensity and multiplicative cascade model was employed to characterize the anisotropic charged colloidal particles suspension during the so-called Sol-Gel transition. Generally we looked for finding a criterion to distinguish the properties of Sol and Gel states systematically. The probability density function (PDF) of the light scattering intensity shows an obvious change with proceeding of the sample aging process (during of gelation state). Our results confirmed that in the so-called Sol state, the value of non-Gaussian parameter, kW, as a function of time is larger than that of for weak-Gel or in coexistence Sol-Gel state. The number of cascades in the... 

    Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal

    , Article Applied Optics ; Volume 55, Issue 32 , 2016 , Pages 8993-8999 ; 1559128X (ISSN) Sheikhaleh, A ; Abedi, K ; Jafari, K ; Gholamzadeh, R ; Sharif University of Technology
    OSA - The Optical Society  2016
    Abstract
    In this paper, we propose what we believe is a novel sensitive micro-optoelectromechanical systems (MOEMS) accelerometer based on intensity modulation by using a one-dimensional photonic crystal. The optical sensing system of the proposed structure includes an air-dielectric multilayer photonic bandgap material, a laser diode (LD) light source, a typical photodiode (1550 nm) and a set of integrated optical waveguides. The proposed sensor provides several advantages, such as a relatively wide measurement range, good linearity in the whole measurement range, integration capability, negligible cross-axis sensitivity, high reliability, and low air-damping coefficient, which results in a wider... 

    Single-phase PWM rectifier parameters optimized by using the intelligent method

    , Article Proceedings - 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON-2010, 11 July 2010 through 15 July 2010, Irkutsk Listvyanka ; 2010 , Pages 677-681 ; 9781424476268 (ISBN) Jafari, F ; Dastfan, A ; Tahmasebi, R ; Rahideh, M ; Sharif University of Technology
    2010
    Abstract
    This paper is dealing with single phase PWM rectifier parameter optimization. A control loop has been designed to attain a suitable output DC voltage with minimum ripple, input current with minimum harmonic and maximum input power factor. In this paper these parameters have been optimized by using Genetic algorithm. To verify the effectiveness of proposed optimization, different simulations have been done. The simulation results prove that the proposed system working good  

    Optimal acceptance sampling policy considering Bayesian risks

    , Article Communications in Statistics - Theory and Methods ; Volume 46, Issue 11 , 2017 , Pages 5228-5237 ; 03610926 (ISSN) Adibfar, S ; Fallah Nezhad, M. S ; Jafari, R ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    In this paper, we propose a sampling policy considering Bayesian risks. Various definitions of producer's risk and consumer's risk have been made. Bayesian risks for both producer and consumer are proven to give better information to decision-makers than classical definitions of the risks. So considering the Bayesian risk constraints, we seek to find optimal acceptance sampling policy by minimizing total cost, including the cost of rejecting the batch, the cost of inspection, and the cost of defective items detected during the operation. Proper distributions to construct the objective function of the model are specified. In order to demonstrate the application of the proposed model, we... 

    Acousto-refrigerator with an adjustable mechanical resonator

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 183-196 ; 1728-144X (ISSN) Amjadi, A ; Abolhassani, M. R ; Jafari, S. B ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Thermoacoustics describes energy conversion processes, activated by interaction temperature oscillation, accompanying the pressure oscillation in a sound wave, with solid boundaries. In ordinary experience this interaction of sound and heat cannot be observed, because of the very low temperature differences, but under suitable conditions, it can be emphasized and amplified to create remarkable thermodynamic effects such as, steep thermal gradients, powerful convective heat fluxes, and strong sound fields. We designed and constructed a simple thermoacoustic refrigerator with an adjustable mechanical resonator, coupled with the acoustic resonator. Our experimental data showed about % 10... 

    Metal-insulator transition in three-dimensional Anderson superlattice with rough interfaces

    , Article Physical Review B - Condensed Matter and Materials Physics ; Volume 85, Issue 22 , 2012 ; 10980121 (ISSN) Jafari, S ; Sheikhan, A ; Esmailpour, A ; Anvari, M ; Tabar, M. R. R ; Sharif University of Technology
    2012
    Abstract
    We study the electronic properties of superlattice with rough interfaces in two and three dimensions using the transfer-matrix method and direct diagonalization of the Anderson Hamiltonian. The system consists of layers with an average constant width, but with stochastic roughness added to the interfaces between the layers. The numerical results indicate that, in the thermodynamic limit, the two-dimensional superlattice is an insulator in the presence of even small roughness. In three-dimensional systems, however, the superlattice exhibits a metal-insulator transition with a well-defined mobility edge located at an energy E c that we compute numerically. For three-dimensional superlattice,... 

    Markov analysis and kramers-moyal expansion of nonstationary stochastic processes with application to the fluctuations in the oil price

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 75, Issue 6 , 2007 ; 15393755 (ISSN) Ghasemi, F ; Sahimi, M ; Peinke, J ; Friedrich, R ; Jafari, G. R ; Rahimi Tabar, M. R ; Sharif University of Technology
    2007
    Abstract
    We describe a general method for analyzing a nonstationary stochastic process X (t) which, unlike many of the previous analysis methods, does not require X (t) to have any scaling feature. The method is used to study the fluctuations in the daily price of oil. It is shown that the returns time series, y (t) =ln [X (t+1) X (t)], is a stationary and Markov process, characterized by a Markov time scale tM. The coefficients of the Kramers-Moyal expansion for the probability density function P (y,t y0, t0) are computed. P (y,t, y0, t0) satisfies a Fokker-Planck equation, which is equivalent to a Langevin equation for y (t) that provides quantitative predictions for the oil price over times that... 

    Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation

    , Article Acta Mechanica ; Volume 219, Issue 1-2 , January , 2011 , Pages 65-75 ; 00015970 (ISSN) Jafari Talookolaei, R. A ; Salarieh, H ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    The large amplitude free vibration of an unsymmetrically laminated composite beam (LCB) on a nonlinear elastic foundation subjected to axial load has been studied. The equation of motion for the axial and transverse deformations of a geometrically nonlinear LCB is derived. Using the Ritz method, the governing equation is reduced to a time-dependent Duffing equation with quadratic and cubic nonlinearities. The homotopy analysis method (HAM) is used to obtain exact expressions for the dynamic response of the LCB. This study shows that the third-order approximation of the HAM leads to highly accurate solutions that are valid for a wide range of vibration amplitudes. The effects of different...