Loading...
Search for: shokri--ali
0.121 seconds

    An Investigation into Entanglement in Electrical Transport in a One-dimensional Model Using Transfer Matrix Method

    , M.Sc. Thesis Sharif University of Technology Safari, Maryam (Author) ; Rezakhani, Ali (Supervisor) ; Shokri, Ali Asghar (Co-Supervisor)
    Abstract
    This thesis analyzes the scattering of a propagating electron from a single bound electron .The study demonstrates how the scattering of the propagating electron from the bound electron causes entanglement between two electrons. The study then considers the impact of spin-dependent scattering in the presence of Hartree and exchange potentials. In the first step, only an exchange potential is studied. Transmission coefficients are calculated for spin-flip and non-spin-flip states by solving the Hamiltonian equation in different regions, applying the continuity boundary conditions for the wave function and its derivative in each region, and using the transfer matrix method. Transmission... 

    On the Latin Square of Groups and their Coloring

    , M.Sc. Thesis Sharif University of Technology Shokri, Kianoosh (Author) ; Mahmoodian, Ebadollah (Supervisor)
    Abstract
    A Latin square of order n, is an n n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column.Two cells of a Latin square are independent when they are not in the same row, or in the same column and they are not the same symbol. If they are not independent, they are called dependent. A k-coloring of a Latin square is assigning k colors to its cells where no two dependent cells have the same color. The smallest k for which we have a k-coloring for a Latin square L with k colors is called chromatic number of L and we denote it by L). If we consider the Cayley table of an arbitrary finite group of order n, then we have a Latin square of... 

    Heat transfer aspects of regenerative-cooling in methane-based propulsion systems

    , Article Aerospace Science and Technology ; Volume 82-83 , 2018 , Pages 412-424 ; 12709638 (ISSN) Shokri, M ; Ebrahimi, A ; Sharif University of Technology
    2018
    Abstract
    In the present article, thermal behavior and heat transfer deterioration (HTD) of transcritical methane as well as the fluid state change in regenerative cooling with straight/curved rectangular channels are studied numerically. Simulations are conducted with a finite-volume based CFD solver utilizing reliable turbulence models and thermo-fluidic relations in transcritical conditions. The experimental and numerical results of hydrogen inside a heated tube in the literature are used for validation. The effects of mass flow rate, outlet pressure, wall temperature, surface roughness, and the channel geometry on the thermal behavior of the coolant fluid are studied in detail. According to the... 

    Evolution of Electromagnetic Fields in a Plasma of Quarks and Gluons

    , Ph.D. Dissertation Sharif University of Technology Shokri, Masoud (Author) ; Sadooghi, Neda (Supervisor)
    Abstract
    In heavy ion collisions, extremely large electromagnetic fields are produced by fast-moving charged nucleons. They are sufficiently large to affect the low energy QCD processes and thus produce observable effects, whose occurrence is, however, directly related to the lifetime of these fields. In the present dissertation, the evolution of electromagnetic fields is studied in a plasma of quarks and gluons, by analytically solving the equations of relativistic magnetohydrodynamics (RMHD). The onideal Bjorken RMHD is solved by introducing the method of nonconserved charges. Assuming an electromagnetic force-free condition, the electric and magnetic fields are found to be either parallel or... 

    Optimization of the Arrangement of Internal Rib Stiffeners for Columns of the Milling Machine to Achieve Maximum Stiffness and Maximum Working Frequency Range.

    , M.Sc. Thesis Sharif University of Technology Shokri, Aziz (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Vertical milling machine is one of the most common machine tools for precision parts production. The static deflection of the machine tool and thus the displacement of the tool, is due to the high machining forces is the most important factor in reducing the dimensional Precision of the work piece. Also, the overlap of the frequency range of operation with the natural frequencies causes an undesirable resonance phenomenon. Reducing the strain energy of the column and thus the reducing the displacement of the tool, and increasing the first natural frequency of the milling machine, given that the frequency range of operating is below the first frequency, is a desirable change that can be... 

    Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel

    , Article Applied Thermal Engineering ; Volume 147 , 2019 , Pages 216-230 ; 13594311 (ISSN) Shokri, M ; Ebrahimi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this article, the conjugate heat transfer of the methane coolant inside a rectangular channel is studied and the related Nusselt correlations are improved. The compressible methane flow enters the cooling channel at supercritical pressure and subcritical temperature. The coolant flow absorbs heat from the heated walls and exits the channel with a supercritical temperature. An in-house solver is developed employing Semi-Implicit Method for Pressure-Linked Equations-Consistent (SIMPLEC) algorithm accompanied by the appropriate thermodynamic and transport property relations for the supercritical conditions of the methane coolant. The solver is validated with the experimental data found in... 

    Kinetic Investigation of the Thermal Treatment of E-Waste with Particular Emphasis on Printed Circuit Boards (PCBs)

    , M.Sc. Thesis Sharif University of Technology Shokri, Ali (Author) ; Fotovat, Farzam (Supervisor)
    Abstract
    In this study, pyrolysis features and corresponding kinetic behavior of non-metallic fractions of the paper-laminated phenol resin printed circuit boards (P-PCB) and fiberglass-reinforced epoxy resin printed circuit boards (E-PCB) were investigated by the use of simultaneous thermogravimetric analysis (TGA/DTG). The kinetic parameters of the P-PCB abs E-PCB during pyrolysis process were estimated from the experimental data by means of three iso-conversional kinetic models, including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods. The activation energy range obtained for P-PCB and E-PCB utilizing the Friedman method was within 117–594.1 and 88.42-295.3 kJ.mol-1,... 

    An efficient simulated annealing approach to the traveling tournament problem [electronic resource]

    , Article American Journal of Operations Research ; Vol.2 No.3, September 2012, 391-398 Nourollahi, S (Sevnaz) ; Eshghi, Kourosh ; Shokri Razaghi, Hooshmand ; Sharif University of Technology
    Abstract
    Scheduling sports leagues has drawn significant attention to itself in recent years, as it involves considerable revenue as well as challenging combinatorial optimization problems. A particular class of these problems is the Traveling Tournament Problem (TTP) which focuses on minimizing the total traveling distance for teams. In this paper, an efficient simulated annealing approach is presented for TTP which applies two simultaneous and disparate models for the problem in order to search the solutions space more effectively. Also, a computationally efficient modified greedy scheme is proposed for constructing a favorable initial solution for the simulated annealing algorithm. Our... 

    Synthesis of One-Dimensional Nanoneedle-Like Arrays Hydroxyapatite for Bone Tissue Engineering Applications

    , M.Sc. Thesis Sharif University of Technology Hassanzadeh Chinijani, Turan (Author) ; Nemati, Ali (Supervisor) ; Khachatourian, Adrine Malek (Supervisor) ; Shokri, Babak (Co-Supervisor)
    Abstract
    Implant primary stability is a crucial component of implant survival. Primary mechanical stability is correlated with implant type, surgical technique, quantity and quality of bone at the recipient site. Since bone integration (BI) significance has been acknowledged, a variety of techniques have been developed to quicken BI and achieve faster fixation. Studies have shown that material type, and many surface properties, including as surface composition, roughness, topography, and energy, have a significant influence during the early stages of bone integration to the implant. In this work, we did synthesis one-dimensional nanoneedle-like arrays of hydroxyapatite using the injection method... 

    Numerical Simulation Cavitating Flows Using Compact Finite-difference Scheme

    , M.Sc. Thesis Sharif University of Technology Shokri, Maryam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the study, the simulation of two-dimensional cavitating flows is performed by applying a high-order accurate numerical method to the preconditioned, homogenous, multiphase Navier-Stokes equations. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations. A coordinate transformation is applied and the resulting system of governing equations in curvilinear coordinates is discretized using a fourth-order compact finite-difference scheme. The high-order accurate numerical scheme employing the suitable linear and nonlinear filters to account for density jumps across the cavity interface is shown to yield an... 

    Properties of charge and magnetic impurities in a spin-polarized electron gas: A semiclassical approach

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 28, Issue 3 , 2005 , Pages 313-322 ; 13869477 (ISSN) Shokri, A. A ; Esfarjani, K ; Sharif University of Technology
    2005
    Abstract
    Analytical studies on the effect of charge and magnetic impurities in a spin-polarized electron gas (SPEG) are carried out using a Thomas-Fermi semiclassical approximation (TFSA). The susceptibility matrix of an SPEG is calculated within the TFSA framework. Charge, spin and mixed charge-spin screening lengths are defined and calculated for the bulk metals (Fe, Co and Ni). It is found that these screening lengths do not strongly depend on temperature in metallic samples. Based on the Ruderman-Kittel-Kasuya-Yoshida (RKKY) model, the magnetic response function is then used to calculate the dependence of the exchange coupling between two ferromagnetic layers. It is seen that the exchange... 

    Temperature and voltage dependence of magnetic barrier junctions with a nonmagnetic spacer

    , Article European Physical Journal B ; Volume 42, Issue 2 , 2004 , Pages 187-191 ; 14346028 (ISSN) Shokri, A. A ; Saffarzadeh, A ; Sharif University of Technology
    2004
    Abstract
    The temperature and voltage dependence of spin transport is theoretically investigated in a new type of magnetic tunnel junction, which consists of two ferromagnetic outer electrodes separated by a ferromagnetic barrier and a nonmagnetic (NM) metallic spacer. The effect of spin fluctuation in magnetic barrier, which plays an important role at finite temperature, is included by taking the mean-field approximation. It is found that, the tunnel magnetoresistance (TMR) and the electron-spin polarization depend strongly on the temperature and the applied voltage. The TMR and spin polarization at different temperatures show an oscillatory behavior as a function of the NM spacer thickness. Also,... 

    The effects of a magnetic barrier and a nonmagnetic spacer in tunnel structures

    , Article Journal of Physics Condensed Matter ; Volume 16, Issue 25 , 2004 , Pages 4455-4463 ; 09538984 (ISSN) Shokri, A. A ; Saffarzadeh, A ; Sharif University of Technology
    2004
    Abstract
    The spin-polarized transport is investigated in a new type of magnetic tunnel junction which consists of two ferromagnetic electrodes separated by a magnetic barrier and a nonmagnetic metallic spacer. Based on the transfer matrix method and the nearly-free-electron approximation the dependence of the tunnel magnetoresistance (TMR) and electron-spin polarization on the nonmagnetic layer thickness and the applied bias voltage are studied theoretically. The TMR and spin polarization show an oscillatory behaviour as a function of the spacer thickness and the bias voltage. The oscillations originate from the quantum well states in the spacer, while the existence of the magnetic barrier gives rise... 

    Scaling for Breakthrough Estimation in Anisotropic Reservoirs Using Percolation Theory Concepts

    , M.Sc. Thesis Sharif University of Technology Shokri, Amir Reza (Author) ; Masihi, Mohsen (Supervisor)
    Abstract
    The most common method of oil recovery is by displacement. By injecting water into wells, to push the oil to production wells, ultimately, the injected fluid breaks through at the production wells. Estimation of breakthrough time is important for the reservoir engineering calculation and the prediction of enhance recovery scenarios. Oil reservoirs are extremely complex, containing geological heterogeneities on all length scales which have a significant impact on hydrocarbon recovery. The conventional approach to investigate the reservoir performance is to build a detailed geological model, upscale it, and finally run flow simulation which is computationally very expensive. In... 

    Exprimental Study of Repair of Low Quality and Damaged Concrete in Reinforced Concrete Bridge Columns

    , M.Sc. Thesis Sharif University of Technology Shokri, Mohammad Reza (Author) ; Joghatae, Abdolreza (Supervisor)
    Abstract
    This study presents the experimental investigation, the effect of cement based chemical materials (Portland cement as a repair material No1. and 2 other cement base chemical materials) to upgrade the structural behavior of reinforced concrete slabs built with low quality (porous) concrete. Because materials used in this study are cement base it is expectable to behavior same as base concrete that its result is better compatibility with base structure against external factors. Other advantages of the use of these materials are consideration of economical and construction aspects. A total of four reinforced concrete column (200x200x800 mm) with low quality (porous) concrete have been built,... 

    Vacuum of Classical Mechanic, Quantum Field and General Relativity

    , M.Sc. Thesis Sharif University of Technology Ashouri Shokri, Younes (Author) ; Golshani, Mehdi (Supervisor)
    Abstract
    The idea of "vacuum energy" with definition of the "Aether" has many historical backgrounds from Aristotelian philosophy to 19th century and the advent of quantum vacuum. Some assert vacuum which is defined as "pure void" and others have got contrary viewpoints. It can be said that the history of vacuum is as old as history of physics. With the advent of quantum mechanics, vacuum has taken a specific definition. Vacuum from vision of quantum mechanics describes that vacuum is the minimum possible energy state, because if the energy of "quantum vacuum state" became zero, Heisenberg uncertainty principle would be violated. The important consequence of quantum mechanics will be in apparent... 

    Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate

    , Article Thin Solid Films ; Volume 548 , 2013 , Pages 443-448 ; 00406090 (ISSN) Khoeini, F ; Khoeini, F ; Shokri, A ; Sharif University of Technology
    2013
    Abstract
    A nanoscale logic NOR gate has been theoretically designed by magnetic flux inputs in a Z-shaped graphene nanoribbon composed of an armchair ribbon device sandwiched between two semi-infinite metallic zigzag ribbon leads. The calculations are based on the tight-binding model and iterative Green's function method, in which the conductance as well as current-voltage characteristics of the nanosystem are calculated, numerically. We show that the current and conductance are highly sensitive to both the magnetic fluxes subject to the device and the size of the system. Our results may have important applications for building blocks in the nanoelectronic devices based on graphene nanoribbons  

    Optimal and suboptimal sensing sequences in multiuser cognitive radio networks

    , Article 2012 6th International Symposium on Telecommunications, IST 2012, 6 November 2012 through 8 November 2012 ; November , 2012 , Pages 243-248 ; 9781467320733 (ISBN) Shokri Ghadikolaei, H ; Nasiri Kenari, M ; Sharif University of Technology
    2012
    Abstract
    Designing proper spectrum decision schemes for cognitive radios (CRs) improves spectral usage efficiency as well as CR network throughput. One of the key effecting factors of the CR network throughput is the spectrum sensing sequences of the secondary users (SUs). In this paper, the SUs throughput maximization through appropriately selecting the sensing sequences of the SUs, called sensing matrix (SM), is investigated. More specifically, first the average throughput of the CR network is evaluated for a given SM in the case of error-free channel sensing. Then, an optimization problem is formulated with the aim to maximize the network throughput by finding the optimal SM. In order to avoid... 

    Investigation of the Effects of Reduced Frequency and Mean Angle of Attack on the Surface Pressure of a Supercritical Airfoil in Pitching Oscillation

    , M.Sc. Thesis Sharif University of Technology Shokri, Hossein (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Supercritical airfoils have been designed for transonic flow, however due to different flight conditions, the airfoil behavior during take-off and landing of the aircraft in subsonic flow regime must be known. Experimental and numerical information derived from supercritical airfoils are less than those of conventional airfoils. Because of the special geometry of supercritical airfoils and different phenomena that occurs through flow, using such airfoils even in steady states requires precise study/analysis of the flow. Therefore, one could benefit from experimental tests to better understand flow phenomena. The objective of the present research is the study effect of mean angle of attack... 

    Optimization Model of Water-energy Nexus in the Cooling Towers

    , M.Sc. Thesis Sharif University of Technology Shokri Motlagh, Shamim (Author) ; Avami, Akram (Supervisor)
    Abstract
    One of the best ways to reduce water consumption is using air cooled heat exchangers, because they work in a completely closed cycle which does not require makeup water. However because of their high surface area and high-technology production method, their production cost is significantly high. Air cooled heat exchangers have relatively high exergy destruction because of low U heat-transfer coefficient. In present research, single-objective and multiple objective optimization problems are developed to minimize total annual cost and exergy destruction. Also the influence of temperature changes on these two objective functions have been evaluated by Monte Carlo simulation. In next step,...