Loading...
Search for: arjmand--navid
0.012 seconds
Total 44 records

    Estimation of Spinal Loads in Static Activities by Considering Trunk Muscle Forces in a Detailed Nonlinear Finite Element Model

    , Ph.D. Dissertation Sharif University of Technology Khodam Khorasani, Pooria (Author) ; Arjmand, Navid (Supervisor) ; Shirazi-Adl, Aboulfazl (Co-Supervisor)
    Abstract
    Spine biomechanical models suffers from either simplification in passive disc components modeling (modeling via torsional spring or beam elements) in musculoskeletal (MS) models or shortcomings in detailed muscles modeling (via a simple force and torque vector) in detailed finite element (FE) models. Considering these, that is aimed in this study to develop a hybrid MS-FE model which the calculated muscle forces by a MS model (developed based on geometrical and mechanical properties of FE model) for a desired static posture, being applied to a detailed FE model. Considering the change of discs stiffness in FE model under the applied muscles and gravity forces, the equivalent stiffness in MS... 

    Biomechanical Analysis of the Effects of L4-L5 Fusion Surgery on Adjacent Segments Using Musculoskeletal and Finite Element Modeling

    , Ph.D. Dissertation Sharif University of Technology Ebrahimkhani, Mahdi (Author) ; Arjmand, Navid (Supervisor) ; Shirazi Adl, Aboulfazl (Co-Supervisor)
    Abstract
    Background: Degeneration of intervertebral joints due to kinetical alterations after fusion surgery is a prevalent back disorder. While in-vivo studies are limited to medical imaging techniques, in-vitro and in-silico (passive FE modeling) investigations lack the crucial role of muscle forces. Available musculoskeletal modeling studies, not only suffer oversimplification of intervertebral joints, but have some shortcomings in incorporation of the contributing factors (that may alter postoperative kinetics). On the other hand, one of the main shortcomings in the available musculoskeletal models is their inability to account for dynamic effects and modeling transient events. Purpose: 1-... 

    Towards Estimation of Trunk Muscle Forces with a Bio-Inspired Control Strategy of Neuro-Osteoligamentous Finite Element Lumbar Spine Model

    , M.Sc. Thesis Sharif University of Technology Sharifzadeh Kermani, Alireza (Author) ; Arjmand, Navid (Supervisor) ; Vossoughi, Gholamreza (Supervisor) ; Parnianpour, Mohamad (Co-Supervisor)
    Abstract
    Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: 1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically-matched equilibrium-based model; 2) test, using the foregoing control-based finite element model, the validity of the... 

    Fabrication Patient-Specific Drill Guide Templates for Cervical Pedicle Screw Placement

    , M.Sc. Thesis Sharif University of Technology Safahieh, Amir Hossein (Author) ; Arjmand, Navid (Supervisor) ; Parnianpour, Mohammad (Supervisor) ; Azimi, Parisa (Co-Supervisor)
    Abstract
    One of the most common spinal surgeries involves spinal fusion or vertebral fixation, which is used to treat various conditions such as intervertebral disc disease, scoliosis (lateral deviation of the spinal column), fractures, infections, or the presence of tumors in the spinal column. In this surgical procedure, the use of pedicle screws and titanium rods prevents motion and friction between two vertebrae. Screws may enter the vertebrae in the wrong position and angle, causing bone weakening, rupture of nerve roots or blood vessels, weakness or lack of sensation in some parts of the body, spinal cord injury, and in severe cases, paralysis of the patient. For this reason, fusion surgery is...