Loading...
Search for: asghari--mohsen
0.013 seconds
Total 59 records

    Mechanical Simulation of Corneal Ring Implant Surgery for Keratoconus Treatment

    , M.Sc. Thesis Sharif University of Technology Bagheri Tadi, Hamid Reza (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Keratoconus is a progressive disease in which the cornea becomes thin and due to the presence of internal pressure in the eye and its application to the cornea, the cornea becomes bulging and conical. In recent years, due to the relatively large number of patients with keratoconus and also the ability of this disease to progress over time, the need to study and research on the treatment of this disease is noticeable. Early and non-surgical methods for the treatment of keratocous are use glass and contact lenses, but since the disease is progressive and usually appears more severely over time, ophthalmologists use the method of corneal ring implant for treatment.In this study, 9 types of... 

    Mechanical Simulation of Corneal Ring Implant Surgery for Keratoconus Treatment Considering Tissue Collagen Structure

    , M.Sc. Thesis Sharif University of Technology Naderi Eshkaftaki, Mohammad Reza (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Keratoconus is one of the most common optical (visual, eye) diseases that usually occurs in youth or early third decade of life. In this disease, cornea gets thin and loses it initial shape and becomes conical. Doctors use different methods for its treatment including use of glasses, contact lenses (hard or soft), cornea transplantation and also cross linking of cornea. Each of these methods have their limitations, on the other hand, considering that this disease progresses and intensifies, ophthalmologists use corneal ring implant surgery for the treatment of this disease in its advanced levels. A good ring implant in corneal causes increased strength and also cause corneal to get back to... 

    Developing Classical and Nonlocal Interlayer Shear Models for Free Vibration Analysis of Multilayer Graphene Plates

    , Ph.D. Dissertation Sharif University of Technology Nikfar, Mohsen (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Experimental observations on multilayer graphene structures show that interlayer interactions including compressive and shear effects between layers are very important in their mechanical behavior. Existing analytical investigations have generally addressed the issue of pressure interactions between layers using interatomic potentials, while the models which consider the interlayer shear effect are rarely found in the literature. To address this shortcoming, this thesis presents a new formulation for multilayer graphene structures with desired shapes and boundaries, taking into account the interlayer shear effect according to the classical continuum mechanics theory. Next, size-dependent... 

    Generating a Database Through Parametric Bi-Ventricular Modeling and Finite Element Analysis of End-Diastolic Mechanical Behavior of Human Heart

    , M.Sc. Thesis Sharif University of Technology Aghigh, Sahand (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Heart failure is one of the leading causes of death around the world and diastolic dysfunction is the main culprit behind about 30 percent of them. End-diastolic pressure-volume relationship is one of the most important indices of ventricles diastolic function, however invasive nature of assessment, has hindered its use in clinical applications. Despite the advances in computational modeling and bio-mechanical simulations, computational cost of these procedures often renders the computational methods unsuitable for clinical implications. Machine learning methods are usually the proper substitute in such cases. However, this method requires a large set of pre-calculated data for training,... 

    Investigation of Modeling Arterial Tissue Growth and Remodeling Under Biaxial Loading Conditions

    , M.Sc. Thesis Sharif University of Technology Badiee, Mohammad Mehdi (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Cardiovascular diseases are one of the leading causes of death in the world. Identifying the mechanical behavior of arteries and their growth and remodeling under applied loadings can help to better understand the progression of the disease and provide more effective clinical interventions. Therefore, many researchers in recent decades have turned their attention to modeling the process of stress-mediated growth and remodeling in soft tissues. Among the most important models proposed to study this process are the constrained mixture model proposed by Humphrey et al. and the volumetric growth model proposed by Hoger et al.. The constrained mixture model is based on the continuous turnover of... 

    Forced Vibration Analysis of Rotating Micro-Shaft Based on the Non-local Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Panahi Dorcheh, Ramin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Nowadays, with progresses made in manufacturing technologies, it is possible to produce micro-scale products such as micro-electromechanical systems. Micro-motors are one type of these systems that can be used in such applications as power supply of electronic devices. To achieve a better performance, these systems must rotate at high rotational speeds (about one million revolutions per minute). At such a high rotational speed, vibrational analysis is highly crucial. The results of recent studies indicate the inability of classical theories of continuum mechanics to analyze the behavior of these micro systems. Therefore, in this research, the rotor of micro-motors are modeled using the... 

    A Ring Selection Platform for Treatment of Keratoconus

    , M.Sc. Thesis Sharif University of Technology Khademi Mofrad, Amir Hossein (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Corneal keratoconus is one of the common eye diseases that usually occurs in the teenage years or the beginning of the third decade of life. In this disease, the cornea thins and loses its original shape and becomes conical. To treat this disease, ophthalmologists use different methods such as using glasses, contact lenses (hard and soft), corneal transplantation, and also corneal cross-linking, each of these methods has limitations, on the other hand, considering that The disease progresses and its severity increases, Ophthalmologists use corneal rings to treat this disease in more advanced stages, implanting a suitable ring in the patient's cornea both increases the strength of the... 

    Modeling of Spleen Tissue for Analyzing it Sinteraction with Alaparoscopic Surgery Instrument

    , M.Sc. Thesis Sharif University of Technology Tirehdast, Mojdeh (Author) ; Farahmand, Farzam (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In the recent years, medical application of robots has been widely developed. Transforming open surgeries to close surgeries has distinguished this novel method to decrease limitations in this type of surgery. In this procedure, two or three small incisions on the skin are used as guides for robotic instruments to enter the cavity, to improve the surgeon’s manipulation and function in surgery. One of challenges in this field is surgeon’s training for laparoscopic surgery. Surgical simulators are used to solve this problem. Lack of instrument for large organs gripping and tissue palpation loss are existing difficulties in available surgical simulators in such a manner that surgeons has no... 

    Investigation of Mechanical Properties of Particulate Metal Matrix Nanocomposites Using Surface Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Farajzadeh Moshtaghin, Alireza (Author) ; Naghdabadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Excellent mechanical properties and high aspect ratio of carbon nanotubes have been the reason for extensive research on nanocomposites reinforced by this nanostructure, and recently metal matrix type of these nanocomposites, due to their advantages, have received great attention. Moreover, nanoporous materials are another type of nanostructured materials which due to their very high porosity have special applications in hydrogen storage, separating molecules, purification and energy absorption. Because of completely neglecting the details of nanoscale structure and not paying attention to the length scale, classical continuum mechanics methods are not precise enough for evaluating different... 

    Numerical Simulation of Al-Si Alloy Fatigue Behavior under Thermo-Mechanical and Isothermal Loads

    , M.Sc. Thesis Sharif University of Technology Ghodrati Ghalati, Mohammad (Author) ; Farrahi, Gholamhossein (Supervisor) ; Asghari, Mohsen (Co-Advisor)
    Abstract
    The main purpose in this thesis is the finite element simulation of the stress-strain behavior in an aluminum-silicon-magnesium alloy, subjected to low cycle fatigue and thermo-mechanical fatigue loadings. This finite element modeling is performed in the ABAQUS software. Two time-dependent and time-independent models are used to simulate the behavior of the material. The time-independent model is the combined nonlinear isotropic/kinematic hardening model, which predicts the mean stress relaxation behavior, the cyclic softening or hardening and the translation of the yield surface, while it ignores the effect of the strain rate. Time-dependent models include Johnson-Cook and the two-layer... 

    Fabrication of a Multi-Layered Scaffold to Be Used in Dermal Wound Healing

    , M.Sc. Thesis Sharif University of Technology Kamali, Ali (Author) ; Shamloo, Amir (Supervisor) ; Asghari, Mohsen (Co-Advisor)
    Abstract
    Wound healing by engineered scaffolds is a new step in bio-technology and medical studies in recent years. The goal of the current study is to propose a novel structure for a tissue-engineered scaffold to be used in wound healing. Influenced from the multi-layered structure of natural human skin, the fabricated scaffold consists of two layers to maximize similarity with natural skin. This product is comprised of an electrospun layer made of polycaprolactone and polyvinyl alcohol and a hydrogel layer made of chitosan and gelatin. In order to form a porous medium in the hydrogel layer, freeze-gelation was used instead of freeze drying. The evaluation of fabricated scaffolds was performed by... 

    Dynamic Analysis of an Inclined Functionally Graded Timoshenko Beam on Viscoelastic Foundation under Moving Mass

    , M.Sc. Thesis Sharif University of Technology Mirzaie, Vahid (Author) ; Firouzbazsh, Keykhosrow (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this study, the linear dynamic response of an inclined FGM Timoshenko beam on linear viscoelastic foundation subjected to a traveling mass with constant and variable velocity is investigated. Timoshenko beam theory and von-karman strain-displacement relations are utilized to model the problem. the FGM beam is made of metal and ceramic and it is assumed that material properties of the beam vary continuously in the thickness direction according to the exponential law and the power-law form. The kelvin-voigt damping model is applied to model the internal damping of the FGM beam. The partial differential equations of motion for the bending rotation of cross-section, longitudinal and... 

    Elastic-Plastic Analysis of Fiber Reinforced Metal Matrix Composite Structures

    , M.Sc. Thesis Sharif University of Technology Mehvari Habibabadi, Reza (Author) ; Naghdabadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this study, an elastic-plastic analysis of fiber reinforced metal matrix composite structures loaded by uniaxial uniform tension in the direction perpendicular to the fiber is carried out by assuming elastic-plastic matrix with kinematic hardening. Representative volume element (RVE) is used for this analysis. The element consists of a combined square field composed of a solid circular cylinder fiber and matrix in plane strain condition. Elastic analysis is carried out using Airy stress function and Michell solution. Unknown coefficients of the Airy stress function are determined by satisfying boundary conditions as well as continuity conditions. The governing equation of plastic zone is... 

    Numerical Simulation of Flow Generated by a Cigarette in a Bus

    , M.Sc. Thesis Sharif University of Technology Soltan Panah, Mohsen (Author) ; Moosavi, Ali (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this study pollution generated by a electronic cigarette in a bus is observed. Resultant smoke from these products consist of different components which may endanger health and one should make sure them amount in general transport vehicles like bus are in permissible limit. These components are initially in liquid shape and evaporate. Tracking liquid particles are done with the aim of Lagrangian approach. For this the geometry is generated at first. Then structured mesh was generated with ICEM CFD which is a powerful mesher. Different conditions of smoking source and bus doors were studies and results were compared.Change of pollutant concentrations is strictly depend on position of... 

    Fault Detection in Centrifugal Pump Using Current Signature Analysis of Induction Motor and Vibration

    , M.Sc. Thesis Sharif University of Technology Mahdavifar, Saeed (Author) ; Behzad, Mehdi (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Pumps are widely used in oil and gas industry. Therefore condition monitoring for this type of equipment is very important. The motor current signature analysis (MCSA) technique as one of the condition monitoring techniques is very effective in the industry, but it is less used in industry. All conventional methods require additional sensors to be installed in the system; current signature analysis as a sensorless method can reduce the cost of condition monitoring. In this study, motor current signature analysis technique was used to diagnosis a centrifugal pump with a capacity of 187 kW from the refinery industry. The impeller wearing ring clearance problem has been investigated. This... 

    Fabrication of Biodegradable Micro/Nano Beads for the Pharmaceutical Applications

    , M.Sc. Thesis Sharif University of Technology Mashhadian, Ali (Author) ; Shamloo, Amir (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Polymeric microspheres which can load biomolecules, proteins and growth factors play an important role in tissue engineering and drug delivery systems. The size of the microspheres and encapsulation efficiency exert a considerable impact on the usability of them. In this study double emulsion method is used for fabrication of microspheres. Effect of different parameters namely the speed of homogenization, time of homogenization, the amount of polymer in oil phase, the surfactant concentration in different phases on the size and surface morphology of the microspheres are investigated. Moreover, a release test for BSA loaded microspheres is conducted. Results indicate that by increasing the... 

    Experimental and Analytical Investigation of Elastic-Plastic Behavior of Glass Fiber Reinforced Polymer Composites

    , M.Sc. Thesis Sharif University of Technology Sajadi, Banafshe (Author) ; Naghdabadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    In this thesis, we aim to study the elastic-plastic behavior of short fiber reinforced composites experimentally and analytically. The experimental investigation is applied to glass fiber-polypropylene composites (PP/GF). The samples are produced by injection process with maximum temperature of 190C. Fibers are randomly oriented in this procedure of fabrication. The samples are tested in tension, and the mechanical strength is measured by changes in fiber content. The Young's modulus is also investigated in these experiments.Also in this thesis, an analytical model for calculation of Young’s modulus of fiber reinforced composite materials is proposed. In this analysis a displacement field is... 

    Fabrication and Thermal Analysis of Superhydrophobic Nano-textured Condensation Substrates

    , M.Sc. Thesis Sharif University of Technology Badkoobeh Hezaveh, Saber (Author) ; Mousavi, Ali (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    This thesis is a research corresponding to Super-Hydrophobic condensation substrates with Nanometer texture. In this study, the foresaid surfaces are fabricated by two methods that are Nano-composite paint and Electrophoretic coating. As a summary for the first method (the Super-Hydrophobic Nano-composite paint), the hybrid coating contains two mineral and organic phases; The organic phase is a two-part clear-coat polyurethane and plays the role as a polymer matrix in Nano-composite structure. Silica Nano-particles are the mineral phase and the two phases of Nano-composite have made connection with silane compounds. Also, surface-modification in Nano-particles for giving hydrophobicity... 

    Simulation of Droplet Sorting in Microfluidic Systems

    , M.Sc. Thesis Sharif University of Technology Fattahi, Hamid Reza (Author) ; Mousavi, Ali (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    A new microfluidic device is introduced for sorting the particles based on the hydrodynamic resistance induced in a microchannel which is not needed for additional detection or sorting modules. Hydrodynamic resistance affects physical properties, such as size and deformability of the particle. This device could apply application in cell sorting for remedies, diagnostics, and industrial applications. The device design is performed using an equivalent resistance model, and also numerical simulations are performed. For validation of the results, they are compared with experimental results. Moreover, we will discuss threshold particle size and will introduce a way to approximate it to ... 

    Optimization and Fabrication of a Linear Ultrasonic Piezoelectric Motor for Nanopositiong Purposes

    , M.Sc. Thesis Sharif University of Technology Sanikhani, Hamed (Author) ; Akbari, Javad (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Nanopositioning systems are devices with the ability of moving objects within nanometer resolution. In the recent years according to the advancements in the nanotechnology fields, there is an urgent and growing need for these systems as precision motion drivers. In the most of the nanopositiong devices some active materials such as piezoelectric elements are widely used as actuators. Piezoelectric materials can generate a mechanical deformation proportional to the applied electrical field. Therefore, theoretically these devices have the ability to set the desired position with the infinite precision.Design, optimization and fabrication of an ultrasonic piezoelectric motor are performed in...