Loading...
Search for: kouchakzadeh--mohammad-ali
0.025 seconds
Total 27 records

    Stress and Deformation Analysis of Metallic Flexible Corrugated Cylindrical Shells Under Internal Pressure

    , M.Sc. Thesis Sharif University of Technology Shademani, Abolfazl (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    Thin-walled cylindrical shells are commonly used in various industries. One application of these structures is as liners for pressurized tanks (especially type III). One type of failure in these vessels is excessive plastic deformation in the shell. This can occur due to various loading conditions on the structure. Although the plastic deformations induced by each loading are limited, they can cause large permanent deformations and eventually lead to shell failure over repeated cycles. In high-risk industries, this issue can result in irreparable damage. By increasing the flexibility and deformability of the liner, the probability of liner failure due to entering the plastic region can be... 

    Buckling Analysis of Beaded Metallic Cylindrical Shells

    , M.Sc. Thesis Sharif University of Technology Nesaei, Faraz (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    Cylindrical shells are widely used in industries. For example, they are used as type 3 pressure vessel's liner. In this work, linear buckling of bead stiffened cylindrical shells under axial load or lateral pressure has been investigated by using numerical modeling. Bead form of cylindrical shell in longitudinal and circumferential direction and combination of both direction is considered. Different parameters such as number, dimension, direction (inside or outside) and cross-section's area of beaded form are considered. The obtained results show that creation of longitudinal beads decrease and increase the critical load and pressure compared to the simple cylindrical shell respectively. The... 

    Control of Two-Arm Flexible Robot Carrying Fluid Tank With Constraint on the Elevation of the Liquid Free-Surface

    , M.Sc. Thesis Sharif University of Technology Bagheri, Pedram (Author) ; Haddadpour, Hassan (Supervisor) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    Control of two-arm flexible robot is studied in this research. The goal is to control the robot in order to carry a fluid tank installed in the top of the last arm, while the vibration of fluid must be damped. The equations governing the system are extracted by the energy method while Euler-Bernoulli beam is selected to model the elastic members. In order to develop the equations, all of the potential and kinematic energies due to rigid and elastic motions are calculated, then a proper controller is designed for the system to accomplish the considered missions. Since the system is classified as an under-actuated system, the exact feedback linearization method is not practical to control the... 

    Non-Linear Vibrations Analysis of Composite Cylindrical Shells Using Modal Method

    , M.Sc. Thesis Sharif University of Technology Entezari, Ayoub (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor) ; Firouzabadi, Rohallah (Co-Advisor)
    Abstract
    With the recent trend to use thin shell structures in severe operational conditions, it is not sufficient to employ the classical linear theory to analyze their dynamic behavior, especially with large amplitudes. When the transverse deflection of a shell raise to the order of its thickness, the nonlinear effects grow significantly, leading to a variety of complex responses, such as the variable frequencies depending on the amplitude and the jump phenomenon. This dynamic behavior should be analyzed by the nonlinear theory of shells. In this research, the nonlinear vibration of composite shallow circular cylindrical shells is considered. The geometric nonlinear strains are of the von Karman... 

    Static and Dynamic Postbuckling of Stiffened Laminated Composite Conical Shell

    , Ph.D. Dissertation Sharif University of Technology Bohlooly Fotovat, Mehdi (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor) ; Mirzavand Boroujeni, Babak (Supervisor)
    Abstract
    In this dissertation, the buckling and postbuckling analysis of lattice conical shells are presented. The outer skins of the shell may be reinforced by cross-ply laminated composites. The shell is subjected to uniform axial compression and the boundary conditions are simply supported. This problem is solved using two different approaches. At first approach, the main priority is high speed calculations, which is investigated in static and dynamic types of loadings. In the case of static loads, the equilibrium equations are formulated based on the classical theory and von Karman type of nonlinearity. The equations are solved by Galerkin method and a closed-form relation is derived. In the case... 

    Experimental and Numerical Investigation on Mechanical Properties of Continuous Fiber Reinforced Parts Fabricated with FDM Additive Manufacturing Method

    , M.Sc. Thesis Sharif University of Technology Arjmandi, Mohammad (Author) ; Yousefi, Reza (Supervisor) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    With advancement of science of aircraft design and limitations of traditional manufacturing methods, using new ones in order to improve efficiency is needed. Among those methods to improve structure efficiency are weight reduction or increase in strength. Increasing strength-to-weight ratio and reduction of weight could be achieved by using composite materials and topology optimization respectively. Manufacturing such parts with efficient design using traditional methods is hard or impossible. Additive manufacturing as a new technology which is being developed every day, can be a big help to aerospace industry. Considering the importance of strength-to-weight ratio in aerospace industry and... 

    Buckling Analysis of Reinforced Composite Conical Shells under Axial Compressive Load using GDQ Method

    , M.Sc. Thesis Sharif University of Technology Gholami, Peyman (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor) ; Shakouri, Meysam ($item.subfieldsMap.e) ; Noghabi, Mohammad ($item.subfieldsMap.e)
    Abstract
    The object of this study is to determine the buckling load of reinforced composite conical shells under axial compression. . Shells are reinforced by stringers and rings and the boundary conditions are assumed to be simply supported. At first the equilibrium equations are obtained using the first order shear deformation theory (FSDT), smeared stiffener technique and principle of minimum potential energy. In the following, the resulting equations which are the system of five variable coefficient partial differential equations in terms of displacement components are investigated by generalized differential quadrature method (GDQM). Finally the standard eigenvalue equation is formed and the...