Loading...
Search for: mahani--hassan
0.018 seconds
Total 25 records

    Microfluidic Investigation of Hydrogen-Water Flow at Pore-Scale for Subsurface Hydrogen Storage

    , M.Sc. Thesis Sharif University of Technology Bahrami, Mehdi (Author) ; Mahani, Hassan (Supervisor) ; Ayatollahi, Shahaboddin (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    Hydrogen storage in porous subsurface formations, such as aquifers or depleted hydrocarbon reservoirs because of their high storage capacity, has gained momentum as a promising approach to balance the renewable energy supply and demand. However, the poor understanding of hydrogen flow dynamics in porous media is the main obstacle to the development and widespread application of underground hydrogen storage (UHS). For example, the main uncertainty is lack of detailed understanding of hydrogen flow dynamics in the natural porous media which leads to the unknown volume of recoverable hydrogen for this cyclic process. In this research, by developing a visual microfluidic apparatus to handle... 

    Direct Numerical Simulation of Hydrogen-Water Flow at Pore-Scale During Underground Hydrogen Storage using Computational Fluid Dynamic Methods

    , M.Sc. Thesis Sharif University of Technology Bagheri Tadi, Mohammad Matin (Author) ; Mahani, Hassan (Supervisor) ; Ayatollahi, Shahabedin (Supervisor) ; Zivar, Davoud (Co-Supervisor)
    Abstract
    Mass or large-scale storage of hydrogen, as a clean source of energy, should be conducted in underground formations in order to be used as a reliable energy source at the peak of consumption. In this regard, underground formations such as aquifers and depleted hydrocarbon reservoirs are the most favorable and secured media for hydrogen storage. However, detailed understanding of the flow dynamics of hydrogen-water in these media is critical to maximize hydrogen storage and recovery and tackle the existing uncertainities which exist in the flow functions. To fill this gap, this research aims at a detailed pore-scale investigation of the effect of flow regime, hydrogen compressibility, and... 

    Cyclic Simulation of Field-Scale Underground Hydrogen Storage

    , M.Sc. Thesis Sharif University of Technology Izadi Amiri, Esmail (Author) ; Mahani, Hassan (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    Due to environmental concerns about fossil fuels energy sources, countries are striving to replace fossil fuels with renewable energy sources. However, most alternative energy sources are highly dependent on weather and seasonal conditions. Underground hydrogen storage (UHS), unlike carbon dioxide storage which only experiences the gas injection phase, involves injection and production cycles. Therefore, it faces different challenges, each of which has different effects on the final hydrogen recovery rate and, consequently, cost estimation. Some of the major challenges ahead include the reservoir structure, heterogeneity of reservoirs, selection of suitable cushion gas, the impact of the... 

    Core-scale Mechanistic Simulation of Engineered Salinity Waterflooding Using Bond-Product-Sum Method

    , M.Sc. Thesis Sharif University of Technology Almasian, Pourya (Author) ; Mahani, Hassan (Supervisor)
    Abstract
    Considering the world's diminishing oil reserves, as well as the growing demand for oil and energy consumption, Enhanced Oil Recovery (EOR) techniques are becoming increasingly important in the attempt to improve oil production. Engineering salinity waterflooding has gained widespread attention and popularity in the last two decades due to its environmental friendliness, lack of expensive additives, low operating costs, and ease of use as an oil extraction process. The goal of this study is to use an innovative method to develop a mechanistic approach model that simulates and forecasts the mechanism and performance of the engineered water flooding process. Wettability alteration, the most... 

    Pore-scale Simulation of the Effect of Pore Geometry and Surface Heterogeneity on Oil Recovery by Low-salinity Water Flooding

    , M.Sc. Thesis Sharif University of Technology Ahmadi Falavarjani, Ali (Author) ; Mahani, Hassan (Supervisor) ; Ayatollahi, Shahabodin (Supervisor)
    Abstract
    Low-salinity waterflooding (LSWF) is a promising EOR approach that decreases the oil-wetness of reservoir rocks, hence increasing the recovery factor. Despite the importance of the pore-geometry on the performance of LSWF, especially in 3D simulations being affected by corner-flow and roughness, it is not yet investigated, thus in this thesis we aim at studying the aforementioned effects on LSWF. According to the preceding studies, during the drainage phase, the brines in the corners of pores cannot be displaced by oil because of requiring very high capillary pressure; thereby rendering a mixed-wet system. Hence considering this type of wettability is necessary for two-phase flow...