Loading...
Search for: maleki--shervin
0.019 seconds
Total 43 records

    Experimental and Numerical Investigations of Base Metal Strength in Welded Bracing Connections

    , Ph.D. Dissertation Sharif University of Technology Ghaderi Garekani, Majid (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    The strength of welded joints is determined by the lower value of the weld metal and base metal strength. In welded bracing connections, the latter includes the connecting element (i.e., the gusset plate) and the bracing member. According to the American steel design standard AISC 360, the base metal strength is determined based on the limit states of tensile rupture, shear yielding, shear rupture, and block shear. While extensive research has been conducted on the limit state of tensile rupture, limited attention has been given to the limit states of shear yielding, shear rupture, and block shear in welded bracing connections. Furthermore, the design strength equations adopted by AISC 360... 

    Seismic Performance of Skewed Integral Bridges

    , M.Sc. Thesis Sharif University of Technology Sarvazimi, Shokufeh (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    The purpose of this research is to evaluate skew integral abutment bridges. A bridge with an integral abutment bridge system is a type of bridge in which the expansion joint is removed so the connection between the abutment and the superstructure is rigid. Therefore, the superstructure and the substructure are integrated with each other and both participate in the lateral load of the structure under seismic or thermal forces. One of the important challenges in this type of bridges is the lack of analysis, tests and limited three-dimensional modeling. According to this, the understanding of the behavior of skew integral abutment bridges and the effects of soil-structure interaction in these... 

    Application of EPS Foams in Buildings as a Seismic Damper

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mohammad Amin (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    Choosing and designing a suitable lateral force resisting system in areas with high seismicity has always been one of the main challenges of structural engineers. Therefore, many systems have been developed and implemented over the past decades. Among them, we can mention reinforced concrete and steel moment frames, concrete and steel shear walls, bracing systems and even their combination under the title of dual systems. The choice of each of the above depends on many factors such as the importance of the building, the seismicity of the region, height of the building, architectural restrictions and also cost. Although the evidence of past earthquakes shows that, for a well-designed...