Loading...
Search for: mohammadi-shodja--hossein
0.013 seconds
Total 39 records

    Direct/InverseScattering of SH Wave in an Infinite Elastic Media with Micro/ Nano Inhomogeneity by Couple Stress Theory with Micro Inertia

    , Ph.D. Dissertation Sharif University of Technology Goodarzi, Azadeh (Author) ; Mohammadi Shodja, Hossein (Supervisor) ; Fotouhi, Morteza (Supervisor) ; Hesaraki, Mahmoud (Co-Advisor)
    Abstract
    Direct/inverse scattering of high frequency SH-waves by a circular micro-/nano-fiberembedded in an infinite elastic isotropic medium is addressed in the framework of couple stresstheory with micro inertia. The inadequacy of classical theory of elasticity in the problems dealingwith propagation of high frequency waves as well as the problems concerning the elastic fields inthe vicinity of micro-/nano-size defects in which the wavelengths and the size of the defects arecomparable to intrinsic length of the material is well-known. These dilemmas can be remedied byemploying the more accurate higher order continuum theories. So, in the context of couple stresstheory with micro inertia, the... 

    Effective Shear Modulus of Elastic Solids Reinforced by Coated Elliptic Nanofibers in the Context of Couple Stress and Micropolar Theories

    , Ph.D. Dissertation Sharif University of Technology Alemi, Bita (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Nowadays, by adding a small amount of a desired nanomaterial to a matrix having certain properties one may design a multifunctional nanocomposites with a remarkably improved macroscopic properties of interest. The capability of conventional continuum theories in treating the problems of embedded ultra-small inhomogeneity with any of its dimensions comparable to the characteristic lengths of the involved constituent phases is questioned, mainly, on the grounds of the accuracy and the size effect. In this work, effort is firstly directed at the prediction of the macroscopic shear modulus of composites consisting of nano-/micro-size fibers of elliptic cross-sections via couple stress theory, a... 

    GRKPM: Theory and Applications in Laminated Composite Plates and Nonlinear Evolutionary Partial Differential Equations With Large Gradients

    , Ph.D. Dissertation Sharif University of Technology Hashemian, Alireza (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Reproducing kernel particle method (RKPM) is a meshfree method for solving various differential equations. RKPM is based on pure mathematics; therefore, it is in the center of attention of many scientists. One major problem in RKPM is satisfying the essential boundary conditions (EBCs) involving the derivative of the field function. This problem is considered herein and its solution is proposed. To this end, two actions should be undertaken. First, the concept of Hermitian interpolation is employed to add the derivative term to the reproducing equation of RKPM and a new meshless method called gradient RKPM (GRKPM) is introduced. Second, the corrected collocation method is modified so... 

    Elastic Field of an Anticrack Via Reproducing Kernel Particle Method

    , M.Sc. Thesis Sharif University of Technology Sohrabpour, Amir Hossein (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Meshless Methods using kernel approximation like Reproducing Kernel Particle Method (RKPM) are methods for solving partial differential equations that require only nodal data and a description of the geometry without requiring element connectivity data and mesh producing. An innovative method of nonplanar material partitioning method (NMPM) with implementation of RKPM is employed to calculate the stress intensity factor (SIF) at the tip of an anticrack sited in an isotropic plate under a remote applied loading. Numerical examples in comparison with the exact closed form expressions show that accurate SIF for mode I can be obtained.

     

    A Tilt of a Surface Rigid Circular Foundation Due to an Inclined Buried Point Load in a Transversely Isotropic Half-Space

    , M.Sc. Thesis Sharif University of Technology Khazaeli, Shervin (Author) ; Mohammadi Shodja, Hossein (Supervisor) ; Eskandari, Morteza (Supervisor)
    Abstract
    The following dissertation examines the interaction between the free surface of a homogenous transversely isotropic half-space and a rigid circular foundation. The whole system is under a vertical and an inclined point loads applied simultaneously on the foundation and at the specified depth of the medium, respectively. Determination of the Green’s functions for the proposed mixed boundary value problem is of interest. By employment of the boundary conditions, the governing equations are represented in terms of a dual integral equation which are subsequently solved analytically. Furthermore, the exact closed-form expressions of the tilt (rotation and settlement) of the loaded rigid foundation... 

    Surface/Interface Effects on The Scattering of In-Plane Elastic Waves by a Multi-Coated Nanofiber

    , M.Sc. Thesis Sharif University of Technology Taheri Jam, Masoud (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In the framework of surface elasticity theory, the scattering of in-plane elastic waves by a multicoated nanofiber embedded in an elastic matrix is studied. Atoms near an interface experience a local environment different from it within the bulk. Going from macro to nano dimensions, surface to volume ratio increases significantly. Thus, on this scale it is important to consider the surface/interface properties as well as the bulk properties. In this dissertation, the surface/interface is modeled by a very thin layer in which the traction and displacement are discontinuous. Effects of surface/interface parameters on the dynamic stress concentration factor (DSCF) and scattering cross section... 

    Study of the Surface Effect on the Behavior of a FG Multiphase Nano-sphere with Spherical Anisotropy due to Some Nonuniform Eigenstrain Field

    , M.Sc. Thesis Sharif University of Technology Shahryari, Benyamin (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The elastic field is one of the challenges in optimizing the lifetime and capacity of the lithiumion batteries. Graphite nanoparticles have been widely used in Li-ion batteries, due to their mechanical, thermal and electrical properties. During the lithiation, chemical reactions occurred in the electrolyte, which forms a solid electrolyte interphase(SEI) in the surrounding of nanoparticles as well as stress fields inside the nanoparticles. Therefore, the purpose of this research is to examine the effects of the surface/interface on diffusion induced stresses(DIS) within core-shell nanosphere due to non-uniform distribution of eigenstrain fields. Due to the mechanical behavior of the phases,... 

    Study of the Surface Effect on the Behavior of a FG Multiphase Nano-Sphere with Spherical Anisotropy Due to some Nonuniform Eigenstrain Field

    , M.Sc. Thesis Sharif University of Technology Shahryari, Benyamin (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The elastic field is one of the challenges in optimizing the lifetime and capacity of the lithium-ion batteries. Graphite nanoparticles have been widely used in Li-ion batteries, due to their mechanical, thermal and electrical properties. During the lithiation, chemical reactions occurred in the electrolyte, which forms a solid electrolyte interphase(SEI) in the surrounding of nanoparticles as well as stress fields inside the nanoparticles. Therefore, the purpose of this research is to examine the effects of the surface/interface on diffusion induced stresses(DIS) within core-shell nanosphere due to non-uniform distribution of eigenstrain fields. Due to the mechanical behavior of the phases,... 

    A Micromechanical Study of Implants via Eigenstrain Theory

    , M.Sc. Thesis Sharif University of Technology Soleimani, Kasra (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In this thesis, concerning Eigenstrain Theory, the micromechanical formulation of dental implants has been derived for the first time in the fields of Mechanics and Medical Science. The proliferation of using dental implants as a prosthesis for the people who lost their teeth because of poor maintenance and smoking cigarette results in scientists think more about the design of these implants and their stress fields inside the mandible. It is crystal clear that these stress fields cause stress shielding, which is a phenomenon that brings about bone loss or decrement in the bone density. Hence, if we know the stress that is produced by the implants inside the mandible, we can optimize the... 

    Surface and Interface Effects on the Elastic Fields of an Edge Dislocation Inside a Silicon Nanotube with Thin Siox Coating

    , M.Sc. Thesis Sharif University of Technology Azizi, Pegah (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The exact analytical elastic fields within a double-walled silicon nano-tube with a thin layer of SiOx coating associated with surface/ interface effects as well as the classical theory of elasticity due to the presence of an edge dislocation with an arbitrary Burger’s vector and position inside of the silicon is determined via complex potential function method. Stress contours within surface elasticity and classical theory are given, and both theory results are compared. Then, the effects of surface Lamé Constants, magnitude and direction of Burger’s vector, shear modulus, nano-tube size, and position of the edge dislocation on the distribution of stress components are illustrated, and the... 

    SH-wave Propagation in phononic Crystals of Periodic Nanostructures with Deformable Interfaces

    , M.Sc. Thesis Sharif University of Technology Sanati, Mahsa (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The aim of this study is to investigate the propagation of anti-plane shear waves in an elastic medium composed of periodic nanolayers (metamaterials) with deformable interfaces.Some of interesting properties of metamaterials are band-gaps and negative refraction angle.In nanolayered mediums the effect of interface becomes significant and classical continuum theory is not sufficient individualy. In this research by introducing 4 interface parameters and adding some equations to classical continuum theory, the possibilty of discontinuity of traction and displacement across the interface is provided and the effect of interface is considered. Then, a functional representing the energy of the... 

    The Scattering of Electro-Elastic Fields of an SH-Wave in a
    Piezoelectric Medium by an Eccentric Two-Phase Circular
    Piezoelectric Micro Sensor

    , M.Sc. Thesis Sharif University of Technology Jarfi, Hamid (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    This thesis presents an analytical solution for determination of the
    electro-elastic media subjected to an anti plane shear harmonic wave containing a multi-phase cylindrical fiber whose electro-elastic properties differ from those of the matrix. Both the matrix and the coated-fiber system are transversely isotropic piezoelectric materials with symmetry and poling axes parallel to the fiber axis. The coating can have variable thickness. The dynamic electro-mechanical equivalent inclusion method (DEMEIM) is presented and employed as an extension of dynamic equivalent inclusion method (DEIM) in order to take into account the electro-mechanical coupling. Accordingly, the coating-fiber... 

    Nonlocal Kernel Functions for fcc and hcp Crystals with Application to Dislocation Problems

    , Ph.D. Dissertation Sharif University of Technology Shahvaghar Asl, Silda (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    For half a century, the problem of extracting the components of the nonlocal moduli tensor of anisotropic materials has been remained unsolved. In the present work, for the first time, the solution of this problem is proposed and the components of nonlocal moduli tensor are obtained for close-packed crystals, i.e. face center cubic or hexagonal closed packed. To this end, new distinct nonlocal kernel functions which have the characteristics of discrete atomistic Green’s functions in the stress space are obtained through consideration of the nonlocal dispersion relations. Each of dispersion relations are associated with certain directions and are combined with ab initio Density Functional... 

    Behavior of Composites Containing Multi-coated Nano-fibers with Interfacial Damage in Couple Stress Theory

    , Ph.D. Dissertation Sharif University of Technology Hashemian, Behdad (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    It is well-known that classical continuum theory has certain deficiencies in capturing the size effects and predicting the nanoscopic behavior of materials in the vicinity of nano-inhomogeneities and nano-defects with reasonable accuracy. Couple stress theory which is associated with an internal length scale for the medium is one of the higher order continuum theories capable of overcoming such difficulties. Since most reinforcements may not be perfectly bonded to their surrounding matrix, the perfect bonding condition is often inadequate in describing the physical and mechanical behavior of real composite materials. In this work, the problem of a nano-size fiber embedded in an unbounded... 

    Wave Propagation in Cubic Crystal Media within Surface Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Behnoud, Paria (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The aim of this work is to investigate the surface effects on SH wave propagation in ultra-thin layers with body-centered cubic single-crystal and face-centered cubic single-crystal structures, as well as Love and Rayleigh surface waves propagation in a single crystalline bcc half-space solid.Due to the wide application of wave propagation in science and technology, this issue has attracted the attention of many researchers and engineers. Wave propagation is used in surface science, coustoelectronics, and non-destructive evaluations.In this study, ultra-thin layers have thicknesses between 2 and 6 nm. For such layers, the physical and mechanical effects of surface are not negligible.It is... 

    Analytical Study of Electro-Elastic Fields in a Spherical Anisotropic Piezoelectric Medium under General Electromechanical Loading By Means of Tensor Spherical Harmonics

    , M.Sc. Thesis Sharif University of Technology Farsiani, Mohsen (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In the past few decades piezoelectric materials have gained extensive applications in electromechanical devices and smart composite materials. Composite piezoelectric materials posses better piezoelectric effects as compared with the homogeneous piezoelectric materials. A special type of composite piezoelectric materials is multiphase spherical ensemble. Consider a set of (N + 1)-phase concentric spherical piezoelectric ensemble consisting of a core region encased by a sequence of nested spherical layers. Each phase is spherically isotropic, the polling direction of it, is radially oriented and it is also functionally graded piezoelectric material (FGPM) in the radial direction. This paper... 

    Eigenfield Theory for Grade Two Flexoelectric Composites with Periodic or Arbitrary Nanostructure and General Anisotropy

    , M.Sc. Thesis Sharif University of Technology Ghanimi, Zahra (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Studying the behavior of electromechanical systems containing nanostructures, because of their widespread applications in the nanoscience and technology is of great interest. For this purpose, this work is devoted to analytical and exact determination of the electroelastic fields associated with periodic and arbitrary distributions of electromechanical nano inclusions and nano inhomogeneities of various shapes within electroelastic mediums of general anisotropy. Since classical continuum Theories are inadequate in accounting for size affects in nanostructures, a first strain gradient - first electric field gradient theory is applied. The present work considers Piezoelectric and Flexoelectric... 

    First Principles Studies of Mechanical, Physical, and Electronic Properties of a-Si - also, Diffusion of a Self-interstitial Atom in an Ultra-thin fcc Film Via Lattice Statics

    , Ph.D. Dissertation Sharif University of Technology Tabatabaei, Maryam (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    By employing first principles density functional theory-based (DFT) molecular dynamics (MD), the influences of dangling and floating bonds as well as distorted tetrahedral bonds are studied on the mechanical, physical, and electronic properties of amorphous Si (a-Si). For further examination of the effects of these geometrical defects, two distinct amorphous samples, namely as-quenched and annealed are generated and examined. To verify the validity of the representative cells, the obtained radial distribution function, pair correlation function, and cohesive energy are compared with those corresponding results presented in the literature. Moreover, the surface energy is calculated at final... 

    Accurate Analytical Formulation of the Electro-elastic Fields of the Nanosized Quantum Wires and Guantum Dots in Piezoelectric Media with General Anisotropy

    , M.Sc. Thesis Sharif University of Technology Marashi, Saeede Sadat (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The electro-elastic fields of nano-sized piezoelectric structures are considered based on the non-classical continuum theory. Nowadays because of increasing the application of piezoelectric materials in nano technology and exclusive properties of this kind of materials, they can use as the ingredients of electromechanical systems. Therefore, the determination of induced electro-mechanical fields is important. In this study the constitutive equations based on non-classical continuum theory and general anisotropy for the elastic, piezoelectric and dielectric tensors are considered, and the electromechanical fields are determined using the micromechanical method. Furthermore, the size effects...