Loading...
Search for: shamloo--a
0.005 seconds

    Dual improvement of DNA-directed antibody immobilization utilizing magnetic fishing and a polyamine coated surface

    , Article RSC Advances ; Volume 6, Issue 112 , 2016 , Pages 111210-111216 ; 20462069 (ISSN) Esmaeili, E ; Soleimani, M ; Shamloo, A ; Mahmoudifard, M ; Vossoughi, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    The present study is aimed at the development of a novel approach based on the magnetic improvement of DNA-directed antibody immobilization to prepare a highly efficient sensing platform. Magnetic nanoparticle substrates with high surface area capture the dual DNA-conjugated antibodies in a solution. This allows overcoming the typical mass transport limitation of the surface-based antibody immobilization. Antibody-magnetic nanoparticle conjugation is based on a robust hybridization between a DNA tether (attached to the antibody) and its complementary sequence (immobilized on the nanoparticle). Conventional antibody immobilization for the detection of proteins is often insignificant for the... 

    Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: In vitro study

    , Article Artificial Organs ; Volume 40, Issue 8 , 2016 , Pages 765-773 ; 0160564X (ISSN) Mohseni, M ; Shamloo, A ; Aghababaei, Z ; Vossoughi, M ; Moravvej, H ; Sharif University of Technology
    Blackwell Publishing Inc 
    Abstract
    Many patients all over the world suffer from acute wounds caused by traumas or burns. In most crucial cases, skin regeneration cannot be promoted spontaneously, and skin grafts are applied as the main treatment. However, this therapy has some drawbacks which motivate researchers to develop wound dressings. In this study, electrospun mats consisting of polycaprolactone (PCL) and polyvinyl alcohol (PVA) incorporated with silver sulfadiazine (SSD) are proposed to be used as antimicrobial wound dressings with the capability of cell seeding. Various amounts of SSD were loaded into PVA nanofibers, and the effects of SSD particles on the morphological characteristics of nanofibers, mechanical... 

    Optimal magnetic field for crossing super-para-magnetic nanoparticles through the Brain Blood Barrier: A computational approach

    , Article Biosensors ; Volume 6, Issue 2 , 2016 ; 20796374 (ISSN) Pedram, M. Z ; Shamloo, A ; Alasty, A ; Ghafar Zadeh, E ; Sharif University of Technology
    MDPI AG  2016
    Abstract
    This paper scrutinizes the magnetic field effect to deliver the superparamagnetic nanoparticles (SPMNs) through the Blood Brain Barrier (BBB). Herein we study the interaction between the nanoparticle (NP) and BBB membrane using Molecular Dynamic (MD) techniques. The MD model is used to enhance our understanding of the dynamic behavior of SPMNs crossing the endothelial cells in the presence of a gradient magnetic field. Actuation of NPs under weak magnetic field offers the great advantage of a non-invasive drug delivery without the risk of causing injury to the brain. Furthermore, a weak magnetic portable stimulator can be developed using low complexity prototyping techniques. Based on MD... 

    Molecular dynamics simulation of the dissociation mechanism of P-selectin from PSGL-1

    , Article Journal of Theoretical and Computational Chemistry ; Volume 16, Issue 4 , 2017 ; 02196336 (ISSN) Hassani Ardekani, H ; Niroomand Oscuii, H ; Nikbin, E ; Shamloo, A ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2017
    Abstract
    Interactions between P-selectin, expressed on activated endothelium, and its counterpart P-selectin glycoprotein ligand-1 (PSGL-1), expressed on leukocytes, play a pivotal role in adhesive events that recruit circulating leukocytes toward inflamed or injured tissues. Atomistic understanding of the association and dissociation of these bonds under blood flow is necessary to define the underlying mechanism. In this study, steered molecular dynamics (SMD) simulations were applied to investigate the conformational changes of P-LE/SGP-3 construct (an effective binding unit of the P-selectin/PSGL-1 complex) under stretching with constant velocity. In the present simulations, a self-built force... 

    Dynamic analysis of magnetic nanoparticles crossing cell membrane

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 372-378 ; 03048853 (ISSN) Pedram, M. Z ; Shamloo, A ; Ghafar Zadeh, E ; Alasty, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of... 

    Dynamic analysis of magnetic nanoparticles crossing cell membrane

    , Article Journal of Magnetism and Magnetic Materials ; Volume 422 , 2017 , Pages 464- ; 03048853 (ISSN) Pedram, M. Z ; Shamloo, A ; Ghafar Zadeh, E ; Alasty, E. Y. C. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of... 

    Three dimensional pressure transient behavior study in stress sensitive reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 152 , 2017 , Pages 204-211 ; 09204105 (ISSN) Moradi, M ; Shamloo, A ; Asadbegi, M ; Dezfuli, A. D ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Stress sensitivity is a phenomenon that affects reservoir rock properties, such as permeability and therefore changes the well pressure transient behavior. This paper aims to study these behaviors in stress sensitive reservoirs and evaluate the pressure loss in such reservoirs during the process of hydrocarbon production. A power model is used to correlate the changes in permeability with pore pressure. A novel semi-implicit three-dimensional finite element method has been employed to numerically solve the flow problem. The numerical results have been validated by analytical results obtained in a non-sensitive reservoir. Pressure drawdown test for different scenarios has been studied. The... 

    Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion

    , Article International Journal of Pharmaceutics ; Volume 609 , 2021 ; 03785173 (ISSN) Ebrahimi, S ; Shamloo, A ; Alishiri, M ; Mozhdehbakhsh Mofrad, Y ; Akherati, F ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Since the beginning of the COVID-19 pandemic, nearly most confirmed cases develop respiratory syndromes. Using targeted drug delivery by microcarriers is one of the most important noteworthy methods for delivering drugs to the involved bronchi. This study aims to investigate the performance of a drug delivery that applies microcarriers to each branch of the lung under the influence of a magnetic field. The results show that by changing the inlet velocity from constant to pulsatile, the drug delivery performance to the lungs increases by ∼31%. For transferring the microcarriers to the right side branches (LUL and LLL), placing the magnet at zero height and ∼30° angle yields the best outcome.... 

    Green synthesis of silica nanoparticles from olive residue and investigation of their anticancer potential

    , Article Nanomedicine ; Volume 16, Issue 18 , 2021 , Pages 1581-1593 ; 17435889 (ISSN) Rezaeian, M ; Afjoul, H ; Shamloo, A ; Maleki, A ; Afjoul, N ; Sharif University of Technology
    Future Medicine Ltd  2021
    Abstract
    Graphical abstract

    Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1703-1725 ; 19942060 (ISSN) Alishiri, M ; Ebrahimi, S ; Shamloo, A ; Boroumand, A ; Mofrad, M. R. K ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The use of external fields such as magnet and ultrasound to enhance the targeted drug delivery (TDD) by nano-microcarriers could be a potential method. In this research, the drug delivery of magnetic nanoparticles (NPs) coated nanoliposomes and microbubbles (MBs) to the atherosclerosis plaque was investigated under magnetic and ultrasound fields in terms of their adhesion to the plaque through ligand–receptor binding. The Halbach arrangement enhanced the surface density of nanoliposomes and MBs adhered to the plaque by ∼ (Formula presented.) and ∼ (Formula presented.), respectively. A focused transducer at the power of (Formula presented.) led to better drug delivery performance and caused ∼... 

    Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1703-1725 ; 19942060 (ISSN) Alishiri, M ; Ebrahimi, S ; Shamloo, A ; Boroumand, A ; Mofrad, M. R. K ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The use of external fields such as magnet and ultrasound to enhance the targeted drug delivery (TDD) by nano-microcarriers could be a potential method. In this research, the drug delivery of magnetic nanoparticles (NPs) coated nanoliposomes and microbubbles (MBs) to the atherosclerosis plaque was investigated under magnetic and ultrasound fields in terms of their adhesion to the plaque through ligand–receptor binding. The Halbach arrangement enhanced the surface density of nanoliposomes and MBs adhered to the plaque by ∼ (Formula presented.) and ∼ (Formula presented.), respectively. A focused transducer at the power of (Formula presented.) led to better drug delivery performance and caused ∼... 

    A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR

    , Article Scientific Reports ; Volume 11, Issue 1 , December , 2021 ; 20452322 (ISSN) Jalili, A ; Bagheri, M ; Shamloo, A ; Kazemipour Ashkezari, A. H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Polymerase chain reaction (PCR) is a powerful tool for nucleic acid amplification and quantification. However, long thermocycling time is a major limitation of the commercial PCR devices in the point-of-care (POC). Herein, we have developed a rapid droplet-based photonic PCR (dpPCR) system, including a gold (Au) nanofilm-based microfluidic chip and a plasmonic photothermal cycler. The chip is fabricated by adding mineral oil to uncured polydimethylsiloxane (PDMS) to suppress droplet evaporation in PDMS microfluidic chips during PCR thermocycling. A PDMS to gold bonding technique using a double-sided adhesive tape is applied to enhance the bonding strength between the oil-added PDMS and the... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; 2015 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Mehrabadi, J. F ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; Volume 22, Issue 10 , 2016 , Pages 2447-2454 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Fallah Mehrabadi, J ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency

    , Article Bioprocess and Biosystems Engineering ; Volume 41, Issue 5 , 2018 , Pages 707-714 ; 16157591 (ISSN) Kashanian, F ; Masoudi, M. M ; Shamloo, A ; Habibi Rezaei, M ; Moosavi Movahedi, A. A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Miniaturized systems based on the principles of microfluidics are widely used in various fields, such as biochemical and biomedical applications. Systematic design processes are demanded the proper use of these microfluidic devices based on mathematical simulations. Aggregated proteins (e.g., inclusion bodies) in solution with chaotropic agents (such as urea) at high concentration in combination with reducing agents are denatured. Refolding methods to achieve the native proteins from inclusion bodies of recombinant protein relying on denaturant dilution or dialysis approaches for suppressing protein aggregation is very important in the industrial field. In this paper, a modeling approach is... 

    A novel magnetic microfluidic platform for on-chip separation of 3 types of silica coated magnetic nanoparticles (Fe3O4@SiO2)

    , Article Sensors and Actuators, A: Physical ; Volume 270 , 2018 , Pages 223-230 ; 09244247 (ISSN) Kashanian, F ; Kokkinis, G ; Bernardi, J ; Zand, M. R ; Shamloo, A ; Giouroudi, I ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a compact and cost effective method for on-chip separation of silica-coated magnetic nanoparticles (SMNPs) with different hydrodynamic size. Three types of SMNPs (Fe3O4@SiO2) with the same magnetic core but with different thickness of silica shells were successfully separated using the developed microfluidic platform. The innovative aspect of the presented separation method is that the induced velocity on the three different types of SMNPs while imposed to the same magnetic field gradient in a static fluid is inversely proportional to their overall, non-magnetic volume. This is due to the enhanced Stokes’ drag force exerted on the nanoparticles (NPs) resulting from their... 

    Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy

    , Article Biophysical Reviews ; Volume 11, Issue 6 , 2019 , Pages 901-925 ; 18672450 (ISSN) Jokar, S ; Khazaei, S ; Behnammanesh, H ; Shamloo, A ; Erfani, M ; Beiki, D ; Bavi, O ; Sharif University of Technology
    Springer  2019
    Abstract
    Alzheimer’s disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a... 

    Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation

    , Article Bioorganic Chemistry ; Volume 102 , September , 2020 Jokar, S ; Erfani, M ; Bavi, O ; Khazaei, S ; Sharifzadeh, M ; Hajiramezanali, M ; Beiki, D ; Shamloo, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (D-GABA-FPLIAIMA) was chosen and...