Loading...
Search for: shamloo--a
0.013 seconds
Total 105 records

    Adsorption behavior of a Gd-Based metal-organic framework toward the quercetin drug: effect of the activation condition

    , Article ACS Omega ; Volume 7, Issue 45 , 2022 , Pages 41177-41188 ; 24701343 (ISSN) Tajahmadi, S ; Shamloo, A ; Shojaei, A ; Sharifzadeh, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    A carboxylate gadolinium-based metal-organic framework (Gd-MOF) is an exceptional candidate for magnetic resonance imaging agents, but its low drug adsorption capacity hinders this MOF from being used as a theragnostic agent. In this work, the Gd-MOF was synthesized by a simple solvothermal method. Then, different activation situations, including various solvents over different time periods, were applied to enhance the specific surface area of the synthesized MOF. Different characterization analyses such as X-ray diffraction and Brunauer-Emmett-Teller along with experimental quercetin adsorption tests were done to study the crystalline and physical properties of various activated MOFs. In... 

    A computational model for estimation of mechanical parameters in chemotactic endothelial cells

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 260-267 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Shamloo, A ; Azimi, S ; Abeddoust, M ; Saidi, M.S ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    A cell migration numerical simulation is presented to mimic the motility of endothelial cells subjected to the concentration gradients of a Forebrain embryoniccortical neuron Conditioned Medium (CM). This factor was previously shflown to induce the directional chemotaxis of endothelial cells with an over-expressed G protein coupled receptor 124 (GPR 124). A cell simulator program incorporates basic elements of the cell cytoskeleton, including membrane, nucleus and cytoskeleton. The developed 2D cell model is capable of responding to concentration gradients of biochemical factors by changing the cytoskeleton arrangement. Random walk force, cell drag force and cell inertial effects are also... 

    A comparison of different geometrical elements to model fluid wicking in paper-based microfluidic devices

    , Article AIChE Journal ; Volume 66, Issue 1 , 2020 Boodaghi, M ; Shamloo, A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Recently, microfluidic paper-based analytical devices (μPADs) have outstripped polymeric microfluidic devices in the ease of fabrication and simplicity. Surface tension-based fluid motion in the paper's porous structure has made the paper a suitable substrate for multiple biological assays by directing fluid into multiple assay zones. The widespread assumption in most works for modeling wicking in a paper is that the paper is a combination of capillaries with the same diameter equal to the effective pore diameter. Although assuming paper as a bundle of capillaries gives a good insight into pressure force that drives the fluid inside the paper, there are some difficulties using the effective... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties...