Loading...
Search for: sharif-university-of-technology
0.078 seconds

    Combined time and information redundancy for SEU-tolerance in energy-efficient real-time systems

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 14, Issue 4 , 2006 , Pages 323-335 ; 10638210 (ISSN) Ejlali, A ; Al-Hashimi, B. M ; Schmitz, M. T ; Rosinger, P ; Miremadi, S. G ; Sharif University of Technology
    2006
    Abstract
    Recently, the tradeoff between energy consumption and fault-tolerance in real-time systems has been highlighted. These works have focused on dynamic voltage scaling (DVS) to reduce dynamic energy dissipation and on-time redundancy to achieve transient-fault tolerance. While the time redundancy technique exploits the available slack-time to increase the fault-tolerance by performing recovery executions, DVS exploits slack-time to save energy. Therefore, we believe there is a resource conflict between the time-redundancy technique and DVS. The first aim of this paper is to propose the use of information redundancy to solve this problem. We demonstrate through analytical and experimental... 

    Nano-crystalline growth of electrochemically deposited apatite coating on pure titanium

    , Article Journal of Electroanalytical Chemistry ; Volume 589, Issue 1 , 2006 , Pages 96-105 ; 15726657 (ISSN) Yousefpour, M ; Afshar, A ; Yang, X ; Li, X ; Yang, B ; Wu, Y ; Chen, J ; Zhang, X ; Sharif University of Technology
    Elsevier  2006
    Abstract
    Hydroxyapatite (HA) coatings were deposited on commercially pure titanium plates using a hydrothermal-electrochemical deposition method in an electrolyte containing calcium and phosphate ions. The deposition conditions used in this study were the followings: electrolyte temperature (33-80 °C), current density (1-8 mA/cm2), and deposition time (10-120 min). Needle-like and granular crystals of apatite coating were created with different concentrations of calcium (0.0021-0.042 M) and phosphate (0.00125-0.025 M) salts. The size of HA crystals of the coating was considerably changed with different concentration of calcium and phosphate salts, temperature of the electrolyte, and deposition time.... 

    Continuous solid-state fermentation as affected by substrate flow pattern

    , Article Chemical Engineering Science ; Volume 61, Issue 8 , 2006 , Pages 2675-2687 ; 00092509 (ISSN) Khanahmadi, M ; Mitchell, D. A ; Beheshti, M ; Roostaazad, R ; Sánchez, L. R ; Sharif University of Technology
    2006
    Abstract
    The performance of continuous solid state bioreactors having two different solid substrate flow patterns, namely plug flow and completely mixed flow, is quantified for both steady-state and transient operation using a simple mathematical model. The core assumption is that each substrate particle acts as an infinitesimal bioreactor. The residence time distribution of the particles is considered in the formulation of the equations for the mixed-flow bioreactor and the error that results from neglecting it is investigated by comparing the simulation results with those of a completely mixed, continuous bioreactor for submerged liquid fermentation (a chemostat). The model is extended to include... 

    Investigation of morphology and bioactive properties of composite coating of HA/vinyl acetate on pure titanium

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 128, Issue 1-3 , 2006 , Pages 243-249 ; 09215107 (ISSN) Afshar, A ; Yousefpour, M ; Xiudong, Y ; Li, X ; Yang, B ; Wu, Y ; Chen, J ; Xingdong, Z ; Sharif University of Technology
    2006
    Abstract
    Electrochemical co-deposition approach was expanded to prepare composite bio-ceramic coating of hydroxyapatite (HA)/polyvinyl acetate on the surface of titanium. The role is to improve the bioactive and crystallization properties. The results of XRD, XPS, SEM and TEM characterization showed that by increasing amount of vinyl acetate in the composite bio-ceramic coating before and after immersing in the simulated body fluid (SBF), an oriented growth of HA planes on the (0 0 2) direction had been observed on titanium substrate. Also significant surface morphology changes were obtained  

    Design and integration of all-silicon fiber-optic receivers for multi-gigabit chip-to-chip links

    , Article ESSCIRC 2006 - 32nd European Solid-State Circuits Conference, Montreux, 19 September 2006 through 21 September 2006 ; 2006 , Pages 480-483 ; 1424403022 (ISBN); 9781424403028 (ISBN) Muller, P ; Leblebici, Y ; Emsley, M. K ; Ünlü, M. S ; Tajalli, A ; Atarodi, M ; Sharif University of Technology
    2006
    Abstract
    This paper presents a top-down approach to the design of all-silicon CMOS-based fully integrated optical receivers. From the system-level requirements, we determine the optimum block-level specifications, based on which the individual building blocks are designed. Measurement results of the manufactured design show operation at data rates exceeding 2.5-Gbps/channel for the detector, the amplification and the clock and data recovery circuits. This proof of concept is the first step towards design optimized, completely integrated, multi-channel optical receivers for high-bandwidth short-distance chip-to-chip interconnects. © 2006 IEEE  

    Integration of the intelligent optimisation algorithms with the artificial neural networks to predict the performance of a counter flow wet cooling tower with rotational packing

    , Article International Journal of Ambient Energy ; 2021 ; 01430750 (ISSN) Assari, N ; Assareh, E ; Alirahmi, M ; Hosseini, H ; Nedaei, M ; Rahimof, Y ; Fathi, A ; Behrang, M ; Jafarinejad, T ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The present study investigated a counter-flow cooling tower performance by integrating the Artificial Neural Networks and Intelligent Optimisation Algorithms (ANN-IOAs). For this purpose, two scenarios were evaluated. In the first scenario, inlet air wet-bulb temperature (T aw), inlet air dry bulb temperature (T ad), water to the air mass flow rate ratio (mw /ma), and rotor speed (υ) were the input parameters for the ANNs, while the output temperature (T wo) was the ANNs output. In the second scenario, the same input parameters applied for the first scenario were used as input variables and the tower efficiency (ε) was considered as an output parameter. The well-known IOAs methods, namely,... 

    An identity based authentication protocol for smart grid environment using physical uncloneable function

    , Article IEEE Transactions on Smart Grid ; Volume 12, Issue 5 , 2021 , Pages 4426-4434 ; 19493053 (ISSN) Sanaullah Badar, H. M ; Qadri, S ; Shamshad, S ; Faizan Ayub, M ; Mahmood, K ; Kumar, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Smart grid plays an important role in managing demand response management in modern smart city using Information and Communication Technologies (ICTs). In smart grid environment, sensors are widely used for surveillance. These are deployed on the high tension power supply lines which help to share the information to control center about line breakage or any other flaw. Besides the cyber-attacks, sensors may also experience physical attacks as they are deployed on high-tension power lines in an open environment. Moreover, an attacker can also impersonate the information exchanged between sensors, gateways and control centers. Therefore, the most indispensable requirement is to prevent these... 

    Atomistic insight into the behavior of ions at an oil-bearing hydrated calcite surface: implication to ion-engineered waterflooding

    , Article Energy and Fuels ; Volume 35, Issue 16 , 2021 , Pages 13039-13054 ; 08870624 (ISSN) Badizad, M. H ; Koleini, M. M ; Greenwell, H. C ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    This research provides an atomistic picture of the role of ions in modulating the microstructural features of an oil-contaminated calcite surface. This is of crucial importance for the rational design of ion-engineered waterflooding, a promising technique for enhancing oil recovery from carbonate reservoirs. Inspired by a conventional lab-scale procedure, an integrated series of molecular dynamics (MD) simulations were carried out to resolve the relative contribution of the major ionic constituent of natural brines (i.e., Na+, Cl-, Mg2+, Ca2+, and SO42-) when soaking an oil-bearing calcite surface in different electrolyte solutions of same salinity, namely, CaCl2, MgCl2, Na2SO4, MgSO4, and... 

    Two-dimensional porous graphitic carbon nitride C6N7 monolayer: first-principles calculations

    , Article Applied Physics Letters ; Volume 119, Issue 14 , 2021 ; 00036951 (ISSN) Bafekry, A ; Faraji, M ; Fadlallah, M. M ; Abdolhosseini Sarsari, I ; Jappor, H. R ; Fazeli, S ; Ghergherehchi, M ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    The fabrication of the C6N7 monolayer [Zhao et al., Sci. Bull. 66, 1764 (2021)] motivated us to discover the optical, structural, mechanical, and electronic properties of the C6N7 monolayer by employing the density functional theory (DFT) method. We find that the shear modulus and Young's modulus of the C6N7 monolayer are smaller than the relevant values of graphene. However, Poisson's ratio is more significant than that of graphene. Applying the PBE (HSE06) functional bandgap of the C6N7 monolayer is 1.2 (1.97) eV, and the electronic dispersion is almost isotropic around the Γ point. C6N7 is more active in the ultraviolet region as compared to the visible light region. This study provides... 

    Land subsidence: a global challenge

    , Article Science of the Total Environment ; Volume 778 , 2021 ; 00489697 (ISSN) Bagheri Gavkosh, M ; Hosseini, M ; Ataie Ashtiani, B ; Sohani, Y ; Ebrahimian, H ; Morovat, F ; Ashrafi, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study presents a comprehensive review of the Land subsidence (LS) cases, as a worldwide environmental, geological, and global geohazard concern. Here, 290 case studies around the world mostly conducted in large metropolitan cities (e.g. Bangkok, Beijing, California, Houston, Mexico City, Shanghai, Jakarta, and Tokyo) in 41 countries were collected. The spatial distribution of LS characteristics (e.g. intensity, magnitude, and affected area), impacts, and influential factors are scrutinized. Worldwide attempts to remedy the crisis of LS were also investigated in this review. It is shown that the coastal plains and river deltaic regions are of high-frequent subsided areas around the world... 

    Modified joint channel-and-data estimation for one-bit massive MIMO

    , Article 53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021, 22 May 2021 through 28 May 2021 ; Volume 2021-May , 2021 ; 02714310 (ISSN); 9781728192017 (ISBN) Bahari, M ; Rasoulinezhad, Ramin ; Amiri, M ; Gilani, F ; Saadatnejad, S ; Nezamalhosseini, A. R ; Shabany, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Centralized and cloud computing-based network architectures are the promising tracks of future communication systems where a large scale compute power can be virtualized for various algorithms. These architectures rely on high-performance communication links between the base stations and the central computing systems. On the other hand, massive Multiple-Input Multiple-Output (MIMO) technology is a promising solution for base stations toward higher spectral efficiency. To reduce system complexity and energy consumption, 1-bit analog-to-digital converters (ADCs) are leveraged with the cost of lowering the signal quality. To recover the lost information, more sophisticated algorithms, like... 

    Deep feature extraction of single-cell transcriptomes by generative adversarial network

    , Article Bioinformatics ; Volume 37, Issue 10 , 2021 , Pages 1345-1351 ; 13674803 (ISSN) Bahrami, M ; Maitra, M ; Nagy, C ; Turecki, G ; Rabiee, H. R ; Li, Y ; Sharif University of Technology
    Oxford University Press  2021
    Abstract
    Motivation: Single-cell RNA-sequencing (scRNA-seq) offers the opportunity to dissect heterogeneous cellular compositions and interrogate the cell-type-specific gene expression patterns across diverse conditions. However, batch effects such as laboratory conditions and individual-variability hinder their usage in cross-condition designs. Results: Here, we present a single-cell Generative Adversarial Network (scGAN) to simultaneously acquire patterns from raw data while minimizing the confounding effect driven by technical artifacts or other factors inherent to the data. Specifically, scGAN models the data likelihood of the raw scRNA-seq counts by projecting each cell onto a latent embedding.... 

    High yield of CO and synchronous s recovery from the conversion of CO2 and H2S in natural gas based on a novel electrochemical reactor

    , Article Environmental Science and Technology ; Volume 55, Issue 21 , 2021 , Pages 14854-14862 ; 0013936X (ISSN) Bai, J ; Zhang, B ; Zhang, Y ; Zhou, C ; Wang, P ; Zha, L ; Li, J ; Simchi, A ; Zhou, B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    H2S and CO2 are the main impurities in raw natural gas, which needs to be purified before use. However, the comprehensive utilization of H2S and CO2 has been ignored. Herein, we proposed a fully resource-based method to convert toxic gas H2S and greenhouse gas CO2 synchronously into CO and elemental S by using a novel electrochemical reactor. The special designs include that, in the anodic chamber, H2S was oxidized rapidly to S based on the I−/I3− cyclic redox system to avoid anode passivation. On the other hand, in the cathodic chamber, CO2 was rapidly and selectively reduced to CO based on a porous carbon gas diffusion electrode (GDE) modified with polytetrafluoroethylene and cobalt... 

    Impact of leadership styles on employees’ performance with moderating role of positive psychological capital

    , Article Total Quality Management and Business Excellence ; Volume 32, Issue 9-10 , 2021 , Pages 1085-1105 ; 14783363 (ISSN) Ahmad Baig, S ; Iqbal, S ; Abrar, M ; Ahmad Baig, I ; Amjad, F ; Zia-ur-Rehman, M ; Awan, M. U ; Sharif University of Technology
    Routledge  2021
    Abstract
    The study aimed to investigate the most effective leadership style that enhances the employees’ performance at the workplace and also evaluate the impact of leadership styles (Laissez-faire leadership, Transformational leadership, Transactional leadership,) on employees’ performance in the textile sector of Pakistan. The study explored the moderating role of Positive psychological capital to examine the relationship between leadership styles and employee performance. A quantitative research technique was used, and Data were collected from the lower to middle-level manager of the textile sector. The findings of this study showed that laissez-faire leadership has a significant but negative... 

    Multicomponent nanoparticles as means to improve anaerobic digestion performance

    , Article Chemosphere ; Volume 283 , 2021 ; 00456535 (ISSN) Baniamerian, H ; Ghofrani Isfahani, P ; Tsapekos, P ; Alvarado Morales, M ; Shahrokhi, M ; Angelidaki, I ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Sufficient quantity of trace metals is essential for a well performing anaerobic digestion (AD) process. Among the essential trace elements in active sites of multiple important enzymes for AD are iron and nickel ions. In the present study, iron and nickel in the form of Fe2O3 and NiO were coated on TiO2 nanoparticles to be used in batch and continuous operation mode. The effect of TiO2, Fe2O3–TiO2, and NiO–TiO2 nanoparticles on each step of AD process was assessed utilizing simple substrates (i.e. cellulose, glucose, acetic acid, and mixture of H2–CO2) as well as complex ones (i.e. municipal biopulp). The hydrolysis rate of cellulose substrate increased with higher dosages of the coated... 

    Secrecy rate maximization for hardware impaired untrusted relaying network with deep learning

    , Article Physical Communication ; Volume 49 , 2021 ; 18744907 (ISSN) Bastami, H ; Moradikia, M ; Behroozi, H ; de Lamare, R. C ; Abdelhadi, A ; Ding, Z ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This paper investigates the physical layer security (PLS) design of an untrusted relaying network where the source node coexists with a multi-antenna eavesdropper (Eve). While the communication relies on untrustworthy relay nodes to increase reliability, we aim to protect the confidentiality of information against combined eavesdropping attacks performed by both untrusted relay nodes and Eve. Considering the hardware impairments (HIs), both total power budget constraint for the whole network and the individual power constraint at each node, this paper presents a novel approach to jointly optimize relay beamformer and transmit powers aiming at maximizing average secrecy rate (ASR). To... 

    Extended gibbs free energy and laplace pressure of ordered hexagonal close-packed spherical particles: A wettability study

    , Article Langmuir ; Volume 37, Issue 28 , 2021 , Pages 8382-8392 ; 07437463 (ISSN) Bayat, A ; Ebrahimi, M ; Rahemi Ardekani, S ; Saievar Iranizad, E ; Zaker Moshfegh, A ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    The wetting property of spherical particles in a hexagonal close-packed (HCP) ordering from extended Gibbs free energy (GFE) and Laplace pressure view points is studied. A formalism is proposed to predict the contact angle (θ) of a droplet on the HCP films and penetration angle (α) of the liquid on the spherical particles. Then, the extended Laplace pressure for the layered HCP ordering is calculated and a correlation between the wetting angle, sign of pressure, and pressure gradient is achieved. Our results show that the sign and the slope of pressure are important criteria for determining the wettability state and it is found that the contact angle is independent of the particle radius, as... 

    Optimal multi-objective resource allocation for d2d underlaying cellular networks in uplink communications

    , Article IEEE Access ; Volume 9 , 2021 , Pages 114153-114166 ; 21693536 (ISSN) Bayat, S ; Jalali, J ; Khalili, A ; Mili, M.R ; Wittevrongel, S ; Steendam, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, we study a resource allocation problem in orthogonal frequency division multiple access (OFDMA)-based Device-to-Device (D2D) communications. To this end, we propose a multi-objective optimization problem (MOOP) framework, which jointly maximizes the sum rate of D2D users (DUs) and cellular users (CUs) in uplink communications and minimizes the total transmit power. The proposed problem formulation takes into account the minimum data-rates and the maximum transmitted power budget for both DUs and CUs. We transform this MOOP into a single-objective optimization problem (SOOP) using the weighted sum method and then propose an approach to solve this SOOP via a monotonic approach... 

    Magnetoelastic coupling enabled tunability of magnon spin current generation in two-dimensional antiferromagnets

    , Article Physical Review B ; Volume 104, Issue 18 , 2021 ; 24699950 (ISSN) Bazazzadeh, N ; Hamdi, M ; Park, S ; Khavasi, A ; Mohseni, S. M ; Sadeghi, A ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    We theoretically investigate the magnetoelastic coupling (MEC) and its effect on magnon transport in two-dimensional antiferromagnets with a honeycomb lattice. MEC coefficients along with magnetic exchange parameters and spring constants are computed for monolayers of transition-metal trichalcogenides with Néel magnetic order (MnPS3 and VPS3) and zigzag order (CrSiTe3, NiPS3, and NiPSe3) by ab initio calculations. Using these parameters, we predict that the spin-Nernst coefficient is significantly enhanced due to magnetoelastic coupling. Our study shows that although Dzyaloshinskii-Moriya interaction can produce spin-Nernst effect in these materials, other mechanisms such as magnon-phonon... 

    Symmetry enhanced spin-Nernst effect in honeycomb antiferromagnetic transition metal trichalcogenide monolayers

    , Article Physical Review B ; Volume 103, Issue 1 , 2021 ; 24699950 (ISSN) Bazazzadeh, N ; Hamdi, M ; Haddadi, F ; Khavasi, A ; Sadeghi, A ; Mohseni, S. M ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    We investigate systematically the spin-Nernst effect in Néel and zigzag ordered honeycomb antiferromagnets. Monolayers of transition-metal trichalcogenides, MnPSe3, MnPS3, and VPS3 show an antiferromagnetic Néel order while CrSiTe3, NiPS3, and NiPSe3 show an antiferromagnetic zigzag order. We extract the exchange and Dzyaloshinskii-Moriya interaction parameters from ab initio calculations. Using these parameters, we predict that the spin-Nernst coefficient is at least two orders of magnitude larger in zigzag compared to the Néel ordered antiferromagnets. We find that this enhancement relies on the large band splitting due to the symmetry of magnetic configuration in the zigzag order. Our...