Loading...
Search for: taghizadeh-manzari--mehrdad
0.007 seconds
Total 55 records

    Evaluation of Transfer Functions of Dual Porosity-dual Permeability Model Using Discrete Fracture Model

    , M.Sc. Thesis Sharif University of Technology Baj, Arash (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; kazemzadeh Hannani, Siamak (Co-Advisor)
    Abstract
    Physics of present work is 2D and two phase immiscible flow under gravity and capillary effect through fractured porous media. Rock properties such as porosity and permeability are homogenous. Discrete fracture model and dual porosity-dual permeability model are used to simulate this problem. Governing equations for such reservoirs are conservation of mass and conservation of momentum. Evaluations are performed in two seperate parts. in the first part, geometry, boundary conditions and initial conditions which important models of transfer functions were calculated are provided by using discrete fracture model and results are compared with results of corresponding reference. Following... 

    Simulation of Self-Propulsive Phenomenon, Using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Beigzadeh Abbassi, Mohammad Reza (Author) ; Tayyebi Rahni, Mohammad (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Many human inventions are inspired by nature, such as fish swimming, bird/insect flight, etc. A basic consideration for the design of swimming machines is the design of propulsors. A creative design of propulsors can be inspired by fish locomotion. The term locomotion means that thrust is generated by undulation of fish body. Thus, there is no need to have an external propulsor. We need to understand how thrust is obtained by fish locomotion. In this study, sub-carangiform motion, which is a well known locomotion and which is practiced by most fish, is simulated numerically using Lattice Boltzmann method (LBM). To simulate the geometry of fishlike body, the profile of a flexible airfoil... 

    Simulation of Flow in Voraxial System Using Fluent

    , M.Sc. Thesis Sharif University of Technology Boromand, Behnam (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Zabihollah, Abolghasem (Supervisor)
    Abstract
    One of the newest technologies in order to separate oil from water and also oil wastewater is the axial vortex separator technology (with commercial name of voraxial). In the current project, we analyze one of the voraxial (2000) separator systems types. In the modeling of voraxial system, we utilize a 3D model which is developed on the basis of commercial sample of voraxial 2000 technology, and conduct the solution of particles and fluid with Lagrangian Eulerian approach. Considering the k-ɛ turbulence model and an incompressible flow with the input of 30GPM and rotational velocity of 400RPM was another segment of the project. Due to the largeness of 10µ particles diameter, the Brownian... 

    Uncertainty Quantification of Two Phase Immiscible Water Oil Flow

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Mehrdad (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    In this project، the immiscible two phase flow of oil-water in the absence of gravity in the two dimensional domain is investigated. The uncertainty quantification of pressure and saturation of fluid in the reservoir are calculated by the methods of statistical moment equation (presented by Tchelepi) and probabilistic collocation method combined with Karhunen Loeve expansion (presented by Heng Lee). Then the results are compared with Monte Carlo simulation. Matlab Reservoir Simulation Toolbox is used for flow simulation. The main problem based on Tchelepi’s work[56[ ، is a horizontal two dimensional problem that there is two injection and production wells at the two end point grids (a... 

    Simulation of Magnetorheological Fluid Flows at Particle Scale

    , Ph.D. Dissertation Sharif University of Technology Hashemi, Mohammad Reza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Fatehi, Rouhollah (Co-Advisor)
    Abstract
    Magnetorheological fluids are suspensions of magnetic solid particles suspended in a nonmagnetic matrix fluid. By imposing an external magnetic field, particles are arranged in microstructures aligned with the external field and hence, dramatically affect the fluid flow. Since the strength of the magnetic field determines the resistance of these microstructures against flow, the rheology of the suspension is a function of the intensity of the external magnetic field. The goal of the present work is to study the role of non-gap-spanning magnetic clusters on the rheology of a magnetorheological fluid. Here, first a robust tool for direct numerical simulation of magnetic suspensions is... 

    Simulation of Flow in Anisotropic Heterogeneous Oil Reservoirs Using Compositional Model and Cell-Based Unstructured Grid

    , Ph.D. Dissertation Sharif University of Technology Moshiri, Mojtaba (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Reservoir simulation is a useful tool for efficient reservoir management and protective exploitation of non-renewable hydrocarbon resources as the main supplier of development programs in the country. Due to the nature of underground hydrocarbon reservoirs, the simulation faces several challenges, both in rock and fluid parts. These challenges should be overcome in order to provide reliable results from simulations. One of the major challenges pertaining to rock, is large discontinuous variations accompanied by anisotropy of rock permeability fields which causes numerous problems when governing equations are solved numerically. A viable numerical procedure shall account for complex reservoir... 

    Simulation of Magnetohydrodynamic Flow in the MWEC Generator Duct Using OpenFOAM Software

    , M.Sc. Thesis Sharif University of Technology Azadi, Ehsan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Magnetohydrodynamic (MHD) flow is concerned with the interaction between the magnetic field and electrically conducting fluid flow. In this investigation, the MHD flow in the duct of magnetohydrodynamic wave energy conversion (MWEC) generator was simulated by use of OpenFOAM software. In the MWEC generator the reciprocating motion of ocean waves lead to electrically conducting fluid flow in the duct of this generator. By applying magnetic field perpendicular to this flow, electric current generate in the fluid. This generator has a higher efficiency compared with other ocean wave energy conversion generators. Firstly, to evaluate accuracy and performance of mhdFOAM code of OpenFOAM, three... 

    Optimization of PARSI Reservoir Simulator and Enhancement in Modeling Capillary Pressure and Gravity Effect

    , M.Sc. Thesis Sharif University of Technology Rasooli, Alireza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    In this research, a novel scheme for flux approximation in finite volume central schemes have been presented, evaluated and used in PARSI reservoir simulator to solve black oil equations with Trangenstein & Bell formulation with gravitational effects. Also, a numerical method, have been proposed to increase the ability of modeling of capillary phenomena to PARSI.Edward's dominant wave-capturing scheme (2005), with Harten-Hymen entropy fix (1983), has been used to solve flow equations with gravity. This scheme relies on the detection of the dominant wave in the system without recourse to characteristic decomposition and upwinding while avoiding the excessive numerical diffusion that is... 

    Compositional Simulation of Hydrocarbon Reservoirs Flow Using Adaptive Compositional Space Parameterization

    , M.Sc. Thesis Sharif University of Technology Sheikhi, Saeed (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    In recent decades, there have been great efforts to simulate flow in hydrocarbon reservoirs and oil recovery processes. Compositional model is one of the most advanced models for this purpose. In this model nonlinear mass conservation equations for multicomponent flow have to be solved along with thermodynamic equilibrium constraints. In most compositional simulators, an equation of state is used to determine phase behavior of hydrocarbon mixtures. In this work an efficient two-phase compositional model for both immiscible and miscible fluid flows in porous media is presented. The solution algorithm employs the so-called Implicit Pressure Explicit Saturation (IMPES) method. To determine the... 

    CFD Modeling of PCCI Combustion for early Direct Injection of Diesel Fuel

    , M.Sc. Thesis Sharif University of Technology Ghofrani, Iraj (Author) ; Hosseini, Vahid (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    At today’s crowded world, the importance of automobile transportation is obvious for all. Due to energy crisis and air pollution problems, designing and manufacturing high-performance and low emission engines is very important. Because of high efficiency and low fuel consumption, diesel engines have attracted more attention. In addition to the mentioned advantages, diesel engine’s nitrogen oxide and particulate matter emissions are very high. So to limit these pollutants, strict standards was legislated by different countries and nations. Recently in the field of diesel engines emission reduction, low temperature combustion concept is proposed that can reduce nitrogen oxide and particulate... 

    Compositional Simulation of 1-D Oil Reservoirs Flow Using a High-Resolution Central Scheme

    , M.Sc. Thesis Sharif University of Technology Haghighi, Erfan (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    In recent years, oil and gas reservoirs are one of the most valuable natural resources and are the main economical basis of the country. Therefore any research which can help to optimize the efficiency and enhance their recovery is of great importance. In the past 30 years, reservoir simulation has evolved from a research field to one of the most flexible tools in reservoir engineering. Simulation is usually more quick, cost effective and reliable than other methods in predicting reservoir performance. Because of complexity of the great amount of computations, research in oil reservoirs field is usually done by mathematical/computer programs, named as simulators. For this reason, various... 

    Numerical Simulation of two Phase Flow Around Gas- Condensate Wells With Compositional Model

    , M.Sc. Thesis Sharif University of Technology Heidary, Hadi (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Seif, Mohammad Saeid (Supervisor) ; Kazemzade Hannani, Siamak (Supervisor)
    Abstract
    If the reservoir temperature lies between the critical temperature and cricondentherm of the reservoir fluid, the reservoir is classified as a retrograde gas-condensate reservoir. When the pressure is decreased on these mixtures, instead of expanding or vaporizing as might be expected, they vaporize instead of condensing. If the reservoir pressure is above the upper dew-point pressure, the hydrocarbon system exists as a single phase in the reservoir (region 3). As the reservoir pressure declines isothermally during production from the initial pressure to the upper dew-point pressure, the attraction between the molecules of the light and heavy components move further apart. As this occurs,... 

    Simulation of Fluid-Solid Mixtures Using SPH Method

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Reza (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Taghizadeh Manzari, M. (In this work, a modified Smoothed Particle Hydrodynamics (SPH) method, with a new moving solid boundary treatment approach, is utilized to simulate the particulateflow problems. The renormalized first and second derivative schemes which lead tothe consistency of the method, are also used along with a modification to the continuityequation which prevents the spurious pressure oscillations. The proposed methodis validated by solving benchmark problems of solid body motion in channel flows.There is a good agreement between the obtained results and those reported in theliterature. The convergence of solutions for different domain discretizations is alsoassessed. In order... 

    Comparison and Evaluation of the Performance of some Fundamental Models for Simulation of Naturally Fractured Hydrocarbon Reservoirs

    , M.Sc. Thesis Sharif University of Technology Mahmoudi, Siamak (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Fractured reservoirs show a different behavior from common reservoirs because of the existence of a broad network of fractures. This phenomenon makes it necessary to apply special methods for fractured reservoirs in the procedure of reservoir simulation. Since twenty percent of petroleum content in the world is buried in fractured reservoirs, investigating these reservoirs is of great importance.
    The first step in simulation of these kinds of reservoirs is to come up with a geometrical model which can be used to take the fracture network influence into account. In the course for reaching such an objective, various models have been developed which are based on specific assumptions and in... 

    Numerical Study of Turbulent Flows by Finite Volume Approach & Turbulence Model K-e

    , M.Sc. Thesis Sharif University of Technology Khalife Soltani, Ali (Author) ; Seif, Mohammad Saeed (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    High-Speed Crafts’ motion has lots of hydrodynamic complexities, so analytical study of their motion is not feasible. Meanwhile, experimental analysis of their reactions in water is not time-consuming & cost-effective. In spite of code generating & developing problems and complexities in the primary stage of numerical modeling of such problems, this method is the most popular & efficient one. On the other hand, flow around high-speed craft bodies has a turbulent nature and needs special cares to predict reasonable results. In the present study, after representing an introduction about the turbulence modeling, we discissed about governing equation such as momentum, volume fraction and rigid... 

    Stress-sensitivity Study in Fractured Reservoirs Using the Discrete Fracture Model and the Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Moradi, Mostafa (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Daneh Dezfuli, Alireza (Co-Advisor)
    Abstract
    Hydrocarbon recovery projects involve large capital investments and have a very high risk associated with them. To minimize this risk, accurate predictions of reservoir performance must be acquired. Reservoir simulation is a powerful tool for fulfilling this requirement. Physics, mathematics, reservoir engineering and computer programming are combined in reservoir simulation in order to predict reservoir performance under different situations both accurately and efficiently. Performance prediction in fractured reservoirs is a much harder task. This difficulty is due to the higher uncertainties associated with their physical and geometrical parameters. More than 60% of world, and almost 70%... 

    Numerical Simulation of Solid-fluid Mixture in Magnetic Field (MRF) Using Smoothed Particle Hydrodynamics (SPH) Method

    , M.Sc. Thesis Sharif University of Technology Dini, Afrand (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    This work is related to the research in the fields of particulate flow with the presence of external magnetic field and simulating movements of particles till making chain of particles. Using direct numerical simulation method for a two-way coupling of fluid and magnetic governing equations makes a more roboust and precise method. Also, using some assumptions simplified general maxwell equations to set of magnetostatic equations. these eqautions are solved by the boundary element method and the integral equations. Using analytic integrals and calculation of magnetic intensity are some techniques suggested for improving the preciesion of the presented work. the magnetic force and torques can... 

    Simulation of Flow in 2Dimensional Fractured Hydrocarbon Reservoirs Using Black-Oil Model and Multi-scale Finite Volume Method

    , M.Sc. Thesis Sharif University of Technology Saidimanesh, Mahdi (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    The goal of this research is to introduce and improve the new multiscale finite volume method for simulation of multiphase flow in porous media. This method has recently presented as an efficient approach in computational fluids dynamics field. This thesis contains the followings: In the first step a brief introduction is presented about petroleum reservoir engineering and different methods of oil production. Then the importance of new simulation methods to anticipate the behavior of these reservoirs with detailed geographical information is discussed. In the second section black-oil formulation in petroleum reservoirs is descritized with the aid of finite volume method. Using general... 

    Combination of a Multi-scale Finite Volume and Streamline Methods for Reservoir Simulation

    , M.Sc. Thesis Sharif University of Technology Faroughi, Salahaddin (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    In this work, the combination of a multi-scale finite volume and streamline methods is presented for subsurface flow modeling. The used multi-scale method in this work is the same with the traditional type of it in algorithm and formulation. However, because of using a new mesh structure for implementation of multi-scale finite volume method, the new method named by Staggered Mesh Multi-scale Finite Volume (SMMsFV) method. Using the staggered mesh has some advantages such as reducing the computational cost and increasing the accuracy of the multi-scale method. In the SMMsFV method, first the coarse grid and dual coarse grid are constructed on the underlying fine grid. Then, the basis and... 

    Multi-resolution Multiscale Finite Volume Method for Reservoir Simulation

    , Ph.D. Dissertation Sharif University of Technology Mosharaf Dehkordi, Mehdi (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Many of natural porous media, especially oil reservoirs, have strong heterogeneities that span a wide range of scales. These heterogeneities are manifested in the form of strong variations in the permeability field. These variations can be of several orders of magnitude within a small distance. Therefore, the flow in porous media is a multiscale Phenomenon. Due to prohibitive size of input data, numerical simulation of such problems needs extremely large computer memory and computational time, which can be impractical in some cases. In recent years, multiscale methods as a powerful tool have been employed to tackle this problem. In present study, a family of non-iterative Multiscale Finite...