Search for: mixers--machinery
0.005 seconds
Total 35 records

    Quantifying the direct influence of diffusive mass transfer in rarefied gas mixing simulations

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 140, Issue 3 , March , 2018 ; 00982202 (ISSN) Darbandi, M ; Sabouri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    This work utilizes the direct simulation Monte Carlo (DSMC) calculations and examines the influence of rarefication on the mixing length and effective diffusion coefficient in a two-species mixing problem. There have been efforts in past rarefied mixing flow studies to bridge between the mixing evolution rate and Knudsen number. A careful review of those efforts shows that the past derived relations did not determine the weights of Reynolds (or Peclet) number in the rarefaction influences. Although they indicated that an increase in Knudsen would decrease the mixing length, such reductions were primarily due to the Reynolds (or Peclet) reduction. Therefore, those studies could not explicitly... 

    An analytical approach in analysis of local oscillator near-the-carrier AM noise suppression in microwave balanced mixers

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 57, Issue 4 , 2009 , Pages 760-766 ; 00189480 (ISSN) Kheirdoost, A ; Banai, A ; Farzaneh, F ; Sharif University of Technology
    In this paper, a new formulation based on conversion matrix method is proposed to analyze near-the-carrier local ocillator (LO) noise down conversion to IF in microwave mixers. This method could be easily applied to analyze LO noise down conversion in any type of mixer. Practical results of this method have been compared with the envelope method and measurement results. It is shown that despite the conventional AM noise suppression in balanced mixers, the near-the-carrier LO noise suppression does not occur necessarily at the center frequency of hybrid in balanced mixers. AM noise suppression values are predicted precisely. © 2006 IEEE  

    A superconductor THz modulator based on vortex flux flow

    , Article IEEE Transactions on Applied Superconductivity ; Volume 19, Issue 4 , 2009 , Pages 3653-3657 ; 10518223 (ISSN) Sarreshtedari, F ; Hosseini, M ; Chalabi, H. R ; Moftakharzadeh, A ; Zandi, H ; Khorasani, S ; Fardmanesh, M ; Sharif University of Technology
    A terahertz modulator based on the Type-II superconductor flux flow oscillator has been proposed. Analytical calculations are presented and the effects of intrinsic and extrinsic parameters such as disorder strength of crystal, penetration depth, frequency, and amplitude of the modulated current on the radiation power spectrum have been studied. The proposed structure also exhibits a mixer-like behavior, in the sense that its output harmonics range from the washboard frequency up to the superconductor gap frequency, so the input signal is practically mixed with the washboard frequency and its harmonics. The modulation index for each harmonic of this modulator has also been investigated. This... 

    Beamforming, null-steering, and simultaneous spatial and frequency domain filtering in integrated phased array systems

    , Article AEU - International Journal of Electronics and Communications ; Volume 110 , 2019 ; 14348411 (ISSN) Karami, P ; Atarodi, S. M ; Sharif University of Technology
    Elsevier GmbH  2019
    In the case that phased array systems are not capable of attenuating interferences, Radio Frequency (RF) front-ends and Analog Digital Converters (ADCs) with a large dynamic range are required to avoid saturation of the receiver. This leads to a higher power consumption. In this paper, employing N-path circuits in Mixer-First receivers, a novel method is introduced in which spatial and frequency blockers are eliminated right before entering the system on the antennas input. In fact using this technique, adjustable spatial notch filter and band-pass frequency filter are implemented to suppress spatial and frequency interferences. The proposed method enhances the robustness and effectiveness... 

    Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 142 , 2019 ; 02552701 (ISSN) Maleki Bagherabadi, K ; Sani, M ; Saidi, M. S ; Sharif University of Technology
    Elsevier B.V  2019
    Micro-mixers are considered as vital components of Micro Total Analysis systems (μTAS). Major objective in the design of micro-mixers is achieving high mixing quality in short mixing times. In this paper, numerical simulation of some micro-mixer designs has been carried out to understand the detailed flow pattern and thereby to propose modifications for improving mixing efficiency. It is well known that inducing convection will provide turbulent like behavior with corresponding mixing enhancement. In micro systems to drive the flow, electro-osmotic force is usually used by introducing electrodes. In this work, mixing electrodes have been implemented to induce convection and eddies. This... 

    Active microfluidic micromixer design using ionic polymer-metal composites

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 371-375 ; 9781728115085 (ISBN) Annabestani, M ; Mohammadzadeh, H ; Aghassizadeh, A ; Azizmohseni, S ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    In most of the microfluidic applications, it is necessary to have a mixed fluid from the beginning, but in microchannels, due to facing with low Reynolds flows, the fluids flow in the channel by the laminar regimes. Hence the mixing process is a challenging problem and researchers are trying to present fast and reliable micromixers. In this paper, using Ionic Polymer-Metal Composites (IPMCs), an active micromixer has been designed. To investigate the appropriateness of IPMC, using experimental and simulation tests, we show that the IPMC actuator is a potential candidate as an active element of microfluidic micromixers  

    Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

    , Article Sensors and Actuators, B: Chemical ; Volume 283 , 2019 , Pages 831-841 ; 09254005 (ISSN) Naghdloo, A ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing... 

    A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators

    , Article Chemical Engineering Science ; Volume 195 , 2019 , Pages 120-126 ; 00092509 (ISSN) Rismanian, M ; Saidi, M. S ; Kashaninejad, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Microfluidic-based concentration gradient generators (CGGs) have a number of applications in chemical, biological and pharmaceutical studies. Thus, precise design of the microfluidic system is crucial to maintaining the desired concentration gradient in microchannels. One of the design considerations is the length of microchannels in the structure of a CGG. A CGG with a short length fails to provide the complete diffusive mixing, while the size of the microchip would unfavorably increase by incorporating a long CGG. Considering a CGG as a tree-like structure consisting of T-shaped micromixers, the mixing process of the species at a straight microchannel has been solved analytically. Herein,... 

    Multiphysics analysis and practical implementation of a soft μ-actuator- based microfluidic micromixer

    , Article Journal of Microelectromechanical Systems ; Volume 29, Issue 2 , 2020 , Pages 268-276 Annabestani, M ; Azizmohseni, S ; Esmaeili Dokht, P ; Bagheri, N ; Aghassizadeh, A ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Electroactive-Polymers (EAPs) are one of the best soft $mu $ -actuators with great biomedical applications. Ionic ones (i-EAPs) have more promising features and have adequate potential for using in the active microfluidic devices. Here, as a case study, we have designed and fabricated a microfluidic micromixer using an i-EAP named Ionic Polymer-Metal Composite (IPMC). In microfluidics, active devices have more functionality but due to their required facilities are less effective for Point of Care Tests (POCTs). In the direction of solving this paradox, we should use some active components that they need minimum facilities. IPMC can be one of these components, hence by integrating the IPMC... 

    Low power receiver with merged N-path LNA and mixer for MICS applications

    , Article AEU - International Journal of Electronics and Communications ; Volume 117 , 2020 Beigi, A ; Safarian, A ; Sharif University of Technology
    Elsevier GmbH  2020
    In this paper, a low power receiver for medical implant communication service (MICS) is presented. Low power design is vital in the MICS applications since the implanted chip has to work for a long time without the need to change its battery. As a result, a merged N-path low noise amplifier (LNA) and mixer block is proposed. In this structure, the LNA and down-conversion mixer share a transconductance to lower the overall power consumption. An N-path feedback is utilized around the shared transconductance not only to improve the LNA selectivity and relax the linearity requirements but also to downconvert the radio frequency (RF) component and create the intermediate frequency (IF) signal. In... 

    Comparative analysis of different static mixers performance by CFD technique: An innovative mixer

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 3 , 2020 , Pages 672-684 Haddadi, M. M ; Hosseini, S. H ; Rashtchian, D ; Olazar, M ; Sharif University of Technology
    Chemical Industry Press  2020
    The flow and mixing behavior of two miscible liquids has been studied in an innovative static mixer by using CFD, with Reynolds numbers ranging from 20 to 160. The performance of the new mixer is compared with those of Kenics, SMX, and Komax static mixers. The pressure drop ratio (Z-factor), coefficient of variation (CoV), and extensional efficiency (α) features have been used to evaluate power consumption, distributive mixing, and dispersive mixing performances, respectively, in all mixers. The model is firstly validated based on experimental data measured for the pressure drop ratio and the coefficient of variation. CFD results are consistent with measured data and those obtained by... 

    CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: Focusing on droplet behavior

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 2 , 2020 , Pages 348-361 Haddadi, M. M ; Hosseini, S. H ; Rashtchian, D ; Ahmadi, G ; Sharif University of Technology
    Chemical Industry Press  2020
    The present study is concerned with the computational fluid dynamics (CFD) simulation of turbulent dispersion of immiscible liquids, namely, water–silicone oil and water–benzene through Kenics static mixers using the Eulerian–Eulerian and Eulerian–Lagrangian approaches of the ANSYS Fluent 16.0 software. To study the droplet size distribution (DSD), the Eulerian formulation incorporating a population balance model (PBM) was employed. For the Eulerian–Lagrangian approach, a discrete phase model (DPM) in conjunction with the Eulerian approach for continuous phase simulation was used to predict the residence time distribution (RTD) of droplets. In both approaches, a shear stress transport (SST)... 

    Design and simulation of an integrated centrifugal microfluidic device for CTCs separation and cell lysis

    , Article Micromachines ; Volume 11, Issue 7 , July , 2020 Nasiri, R ; Shamloo, A ; Akbari, J ; Tebon, P ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2020
    Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a... 

    Investigation of a Novel Microfluidic Device for Label-Free Ferrohydrodynamic Cell Separation on a Rotating Disk

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 2 , 2020 , Pages 372-378 Shamloo, A ; Besanjideh, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Negative magnetophoresis is a novel and attractive method for continuous microparticle sorting inside a magnetic medium. In this method, diamagnetic particles are sorted based on their sizes using magnetic buoyancy force and without any labeling process. Although this method provides some attractive features, such as low-cost fabrication and ease of operation, there are some obstacles that adversely affect its performance, especially for biological applications. Most types of magnetic media, such as ferrofluids, are not biocompatible, and the time-consuming process of sample preparation can be threatening to the viability of the cells within the sample. Furthermore, in this method, both the... 

    A compact mixer and DAC for implementation of a direct conversion OQPSK transmitter

    , Article 2007 IEEE Region 10 Conference, TENCON 2007, Taipei, 30 October 2007 through 2 November 2007 ; 2007 ; 1424412722 (ISBN); 9781424412723 (ISBN) Chahardori, M ; Mehrmanesh, S ; Zamanlooy, B ; Atarodi, M ; Sharif University of Technology
    A compact low power circuit for implementation of a direct conversion OQPSK modulator is proposed. The circuit consists of a digital to analog converter, a low pass filter and an up-converter mixer. By embedding these three blocks, the circuit performance is enhanced and the total power consumption is reduced. The mixer is designed base on a Gilbert cell with on chip inductor loads. Instead of transconductance transistors of Gilbert cell, a fully deferential current mode DAC is used and proficiently a low pass filter is embedded between them and therefore the linearity of total system is improved. All of circuits are designed based on 0.18 μm CMOS technology with a single 1.8 volt power...