Loading...
Search for: activated-carbon
0.009 seconds
Total 73 records

    Functionalized magnetic nanoparticles supported on activated carbon for adsorption of Pb(II) and Cr(VI) ions from saline solutions

    , Article Journal of Environmental Chemical Engineering ; Volume 5, Issue 2 , 2017 , Pages 1754-1762 ; 22133437 (ISSN) Fatehi, M. H ; Shayegan, J ; Zabihi, M ; Goodarznia, I ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Adsorption ability of prepared magnetic nanoparticles supported on activated carbon (AC-MNPs) was evaluated to synthesize an efficient and a low cost adsorbent for removal of Pb(II) and Cr(VI) ions from single and binary component aqueous solutions in the presence of salinity. Magnetic adsorbent was prepared by co-precipitation over activated carbon derived from almond shell by physical activation method. AC-MNPs was modified by oxygen containing functional groups to enhance the adsorption capacity of adsorbent. XRD, XPS, BET, Boehm, TEM, FT-IR, DLS and XRF were used to characterize the AC@Fe3O4@SiO2-NH2-COOH. Characterization analyses indicated the high dispersion of Fe3O4 crystallites on... 

    Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions

    , Article Separation Science and Technology (Philadelphia) ; Volume 53, Issue 16 , 2018 , Pages 2536-2549 ; 01496395 (ISSN) Eslami, A ; Borghei, S. M ; Rashidi, A ; Takdastan, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The synthesis of cheap and environmental friendly adsorbent from residual sugarcane bagasse was done for the removal of naphthalene from aqueous solution. The activated carbon dot was obtained by KOH chemical activation of carbon dots. The characteristics of carbon dots and activated carbon dots were determined using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis. A series of experiments were conducted in a batch system to assess the effect of the system variables, i.e., initial pH, initial naphthalene concentration, adsorbent dosage, and contact time. The kinetic data showed better fit to the... 

    Synergistic effect of Ni-based metal organic framework with graphene for enhanced electrochemical performance of supercapacitors

    , Article Journal of Materials Science: Materials in Electronics ; Volume 30, Issue 13 , 2019 , Pages 12351-12363 ; 09574522 (ISSN) Azadfalah, M ; Sedghi, A ; Hosseini, H ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Developing advanced electrode materials with metal–organic frameworks (MOFs) has increasingly attracted attentions as an effective method for improving supercapacitors performances. However, their poor conductivity has limited their use in energy applications. In this paper, an effective strategy is presented to reduce the electric resistance of MOFs by the in situ synthesis of Ni-based MOFs with graphene (Ni-MOF/graphene). The fabricated Ni-MOF/graphene composite was characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), Raman spectra, Brunauer–Emmett–Teller (BET) and... 

    Removal of Cu 2+ , Cd 2+ and Ni 2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane

    , Article Carbohydrate Polymers ; Volume 210 , 2019 , Pages 264-273 ; 01448617 (ISSN) Sahebjamee, N ; Soltanieh, M ; Mousavi, S. M ; Heydarinasab, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The chitosan/poly vinyl alcohol membrane was modified by addition of some amine group to the membrane structure utilizing polyethyleneimine (PEI) in order to increase ionic metals adsorbent properties of the membrane. The removal percentage of the modified membranes was compared with the pristine membrane and activated carbon as common adsorbents. The membranes were characterized by FTIR, SEM, swelling degree and porosity measurement. The removal percentage of the membrane containing 0.5 wt.% PEI was more than 60% higher than the activated carbon and more than 40% higher than the pristine membrane. The modified membrane showed excellent adsorption capacity of 112.13, 86.08, and 75.5 mg/g for... 

    Carbonaceous supports decorated with Pt–TiO2 nanoparticles using electrostatic self-assembly method as a highly visible-light active photocatalyst for CO2 photoreduction

    , Article Renewable Energy ; Volume 145 , January , 2020 , Pages 1862-1869 Larimi, A ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Supported Pt–TiO₂ photocatalysts on carbonaceous supports were synthesized by the electrostatic self-assembly method to study CO₂ photoreduction to produce CH₄. Catalytic activities of the prepared photocatalysts were correlated with the particle size and dispersion of the active metal, which in turn depended on the type of carbonaceous support used, varying in the order of multi-walled carbon nanotubes (MWCNT) > Single-walled carbon nanotubes (SWCNT) > reduced graphene oxide > activated carbon. Generally, all catalysts were highly photoresistant with less than 5% loss of activity in terms of CH₄ yield. Pt–TiO₂/multi-walled carbon nanotubes exhibited better catalytic activity compared with... 

    A laboratory approach to enhance oil recovery factor in a low permeable reservoir by active carbonated water injection

    , Article Energy Reports ; Volume 7 , 2021 , Pages 3149-3155 ; 23524847 (ISSN) Chen, X ; Paprouschi, A ; Elveny, M ; Podoprigora, D ; Korobov, G ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, different injectivity scenarios were experimentally investigated in a coreflooding system to observe the efficiency of each method in laboratory conditions. Surfactant flooding, CO2 injection, carbonated water injection (CWI), active carbonated water injection (ACWI), after water flooding were investigated through the coreflooding system. First, it is necessary to optimize the surfactant concentration and then use it in ACWI injection. To do this, linear alkylbenzene sulfonic acid (LABSA) was used as a cationic surfactant at different concentrations. It was observed that 0.6 PV concentration of LABSA had an optimum result as increasing the surfactant concentration would not be... 

    Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air

    , Article RSC Advances ; Volume 5, Issue 7 , Dec , 2015 , Pages 5107-5122 ; 20462069 (ISSN) Zabihi, M ; Khorasheh, F ; Shayegan, J ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Copper and cobalt oxides supported on almond shell derived activated carbon (AC) with different loadings were synthesized by sequential and co-deposition-precipitation methods leading to Cu(shell)/Co(core)/AC, Co(shell)/Cu(core)/AC and Cu-Co(mixed)/AC catalysts that were subsequently used for catalytic oxidation of gaseous mixtures of toluene and cyclohexane in air in a tubular flow reactor. The catalysts and the support were characterized by Boehm test, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy... 

    Catalytic wet peroxide oxidation of phenol in a new two-impinging-jets reactor

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 23 , 2009 , Pages 10619-10626 ; 08885885 (ISSN) Dehkordi, A. M ; Ebrahimi, A. A ; Sharif University of Technology
    Abstract
    The catalytic wet peroxide oxidation (CWPO) of phenol with activated carbon (AC) as the catalyst has been successfully tested in a novel type of two-impinging-jets reactor (TIJR). The TIJR is characterized by a high-intensity reaction chamber, which is separated by a perforated plate from other parts of the reactor. The perforated plate was used as a filter to keep the catalyst particles within the reaction chamber. The influences of various operating and design parameters such as jet Reynolds number, feed flow rate, internozzle distance, and the jet diameter on the performance capability of the TIJR were investigated. As a result of the impinging process, turbulence, complex trajectory of... 

    Adsorption of ethylbenzene from air on metal–organic frameworks MIL-101(Cr) and MIL-53(Fe) at room temperature

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 28, Issue 5 , 2018 , Pages 2090-2099 ; 15741443 (ISSN) Jangodaz, E ; Alaie, E ; Safekordi, A. A ; Tasharrofi, S ; Sharif University of Technology
    Abstract
    Volatile organic compounds are a major cause of air pollution; therefore, VOCs are a serious fulmination for the environment. According to studies, adsorption processes have a high performance for the removal of pollutants that by selecting the proper absorbent, efficiency will be improved. In this work performance of two metal organic frameworks are studied so porous materials named MIL-101(Cr) and MIL-53(Fe) as an adsorbent for the removal of ethylbenzene have been synthesized hydrothermally. The materials were characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, adsorption of ethylbenzene, field emission scanning electron microscopy (FESEM),... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new... 

    Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine

    , Article Journal of Environmental Management ; Volume 233 , 2019 , Pages 660-672 ; 03014797 (ISSN) Mahmoodi, N. M ; Abdi, J ; Taghizadeh, M ; Taghizadeh, A ; Hayati, B ; Shekarchi, A. A ; Vossoughi, M ; Sharif University of Technology
    Academic Press  2019
    Abstract
    Herein, Kiwi peel activated carbon (AC), Materials Institute Lavoisier (MIL-88B (Fe), and AC/MIL-88B (Fe) composite were synthesized and used as catalysts to degrade Reactive Red 198. The material properties were analyzed by the FTIR, BET-BJH, XRD, FESEM, EDX, TGA, and UV–Vis/DRS. The BET surface area of AC, MIL-88B (Fe) and AC/MIL-88B (Fe) was 1113.3, 150.7, and 199.4 m2/g, respectively. The band gap values (Eg) estimated by Tauc plot method, were obtained 5.06, 4.19 and 3.79 eV for AC, MIL-88B (Fe) and AC/MIL-88B (Fe), respectively. The results indicated that the AC/MIL-88B (Fe) composite had higher photocatalytic activity (99%) than that of pure AC (79%) and MIL-88B (Fe) catalysts (87%).... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of...