Loading...
Search for: aeroelastic
0.006 seconds
Total 85 records

    Computationally efficient model for flow-induced instability of CNT reinforced functionally graded truncated conical curved panels subjected to axial compression

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 318 , 2017 , Pages 957-980 ; 00457825 (ISSN) Mehri, M ; Asadi, H ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    As a first endeavor, the aeroelastic responses of functionally graded carbon nanotube reinforced composite (FG-CNTRC) truncated conical curved panels subjected to aerodynamic load and axial compression are investigated. The nonlinear dynamic equations of FG-CNTRC conical curved panels are derived according to Green's strains and the Novozhilov nonlinear shell theory. The aerodynamic load is estimated in accordance with the quasi-steady Krumhaar's modified supersonic piston theory by taking into account the effect of the panel curvature. Matrix transform method along with the harmonic differential quadrature method (HDQM) are employed to solve the nonlinear equations of motion of the FG-CNTRC... 

    Multi-objective robust design optimization (MORDO) of an aeroelastic high-aspect-ratio wing

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 11 , 2020 Elyasi, M ; Roudbari, A ; Hajipourzadeh, P ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    In this paper, a new approach for multi-objective robust optimization of flutter velocity and maximum displacement of the wing tip are investigated. The wing is under the influence of bending–torsion coupling and its design variables have different levels of uncertainty. In designing and optimizing wings with a high aspect ratio, the optimization process can be done in such a way to increase the flutter velocity, but this can increase the amplitude of the wing tip displacement to a point that leads to the wings damage and structural failure. Therefore, single-objective design optimization may lead to infeasible designs. Thus, for multi-objective optimization, modeling is based on the... 

    Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine

    , Article Mathematics and Computers in Simulation ; Volume 192 , 2022 , Pages 50-69 ; 03784754 (ISSN) Golnary, F ; Moradi, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, the drivetrain identification problem of a horizontal axis gear-driven wind turbine has been considered. The identification problem leads to a precise model of the drivetrain of the wind turbines which plays a key role in the production and transmission of electrical energy. This process consists of two stages: First, offline identification which needs the input–output data from the drivetrain system. These data are obtained from the FAST code. FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a valid aeroelastic code in the simulation aeroelastic field of offshore and onshore wind turbines. In region 2 (wind velocity is between the cut-in and rated velocities), the... 

    Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes

    , Article Energy ; Volume 145 , 2018 , Pages 261-275 ; 03605442 (ISSN) Ebrahimi, A ; Sekandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, the aeroelastic analysis of a large scale wind turbine rotor is performed with the aim of studying transient performance of turbine in extreme wind conditions, such as wind gusts and rapid yaw changes. The effect of the presence and/or lack of blade pitch control system on output power, rotor thrust, and blade deformation in sudden change of wind speed are investigated. The NREL 5 MW offshore wind turbine is used as the baseline case. In this regard, the modal approach is implemented for modeling the flexible blade structure with tension, bending and torsion degrees of freedom. The unsteady vortex lattice method is employed to obtain the aerodynamic loads. Moreover, the... 

    Supersonic flutter prediction of functionally graded conical shells

    , Article Composite Structures ; Volume 92, Issue 2 , 2010 , Pages 377-386 ; 02638223 (ISSN) Mahmoudkhani, S ; Haddadpour, H ; Navazi, H.M ; Sharif University of Technology
    2010
    Abstract
    Aero-thermoelastic analysis of a simply supported functionally graded truncated conical shell subjected to supersonic air flow is performed to predict the flutter boundaries. The temperature-dependent properties of the FG shell are assumed to be graded through the thickness according to a simple rule of mixture and power-law function of volume fractions of material constituents. Through the thickness steady-state heat conduction is considered for thermal analysis. To perform the stability analysis, the general nonlinear equations of motion are first derived using the classical Love's shell theory and the von Karman-Donnell-type of kinematic nonlinearity together with the linearized...