Loading...
Search for: algae
0.011 seconds
Total 25 records

    Effect of culture age and initial inoculum size on lipid accumulation and productivity in a hybrid cultivation system of Chlorella vulgaris

    , Article Process Safety and Environmental Protection ; Volume 104 , 2016 , Pages 111-122 ; 09575820 (ISSN) Heidari, M ; Kariminia, H. R ; Shayegan, J ; Sharif University of Technology
    Institution of Chemical Engineers 
    Abstract
    Chlorella vulgaris was cultivated in a hybrid (two-stage) system. The effect of the transferring time from nutrient-replete phase with a low light intensity (photobioreactor) to the nutrient deprivation phase (open pond) with a higher light intensity, as well as the effect of initial cell concentration in the deprivation phase, on the growth rate and lipid content of the microalgae was investigated. The microalgae were transferred to the nutrient deprived medium at different intervals with various initial cell concentrations. Transferring the cultivated medium of the 4th day with the initial cell concentration of 66 mg L−1 into the deprivation phase resulted in a highest lipid productivity... 

    Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts

    , Article Biomass and Bioenergy ; Volume 150 , 2021 ; 09619534 (ISSN) Malekghasemi, S ; Kariminia, H. R ; Plechkova, N. K ; Ward, V. C. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, four types of tetrabutylphosphonium carboxylate ionic liquids (ILs) were synthesized and used for a one-pot transesterification of wet Chlorella vulgaris (C. vulgaris) microalgae into fatty acid methyl esters (FAME) in the presence of methanol, as well as refined oils (sunflower, canola, and corn oil). The resulting process removed the need for complete drying and lipid extraction steps typically needed for biodiesel production from microalgae. The leading candidate ionic liquid catalyst, tetrabutylphosphonium formate ([P4444][For]), was further optimized using response surface methodology to minimize material consumption, increase water compatibility, reduce processing time... 

    Comparison of different trophic cultivations in microalgal membrane bioreactor containing N-riched wastewater for simultaneous nutrient removal and biomass production

    , Article Process Biochemistry ; Volume 51, Issue 10 , 2016 , Pages 1568-1575 ; 13595113 (ISSN) Babaei, A ; Mehrnia, M. R ; Shayegan, J ; Sarrafzadeh, M. H ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this study, a submerged membrane was installed in a bioreactor to treat N-riched wastewater and obtain high biomass productivity. Chlorella vulgaris was cultivated under mixotrophic, heterotrophic, and photoautotrophic conditions in different kinds of nitrogen sources (nitrate and ammonium) to compare the microalgae growth and nutrient removal in a membrane bioreactor. Further, the respirometric and photosynthetic activities of microalgae were investigated to evaluate the viability of microalgae in different conditions. The highest biomass productivity was obtained under mixotrophic cultivation in ammonium source (0.230 ± 0.009 gr/L d). Moreover, with this type of cultivation and nitrogen... 

    Characterization of chlorella vulgaris and chlorella protothecoides using multi-pixel photon counters in a 3D focusing optofluidic system

    , Article RSC Advances ; Volume 7, Issue 8 , 2017 , Pages 4402-4408 ; 20462069 (ISSN) Vander Wiel, J. B ; Mikulicz, J. D ; Boysen, M. R ; Hashemi, N ; Kalgren, P ; Nauman, L ; Baetzold, S. J ; Powell, G. G ; He, Q ; Hashemi, N. N ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Analysis of microparticle size and fluorescence intensity can be used to classify microparticles. We designed and fabricated an optofluidic system that characterizes microparticles, including fluorescent microparticles and microalgae. A new type of multi-pixel photon counter (MPPC) was employed to miniaturize the device, lower its power consumption, and make it insensitive to magnetic fields. The system uses a 635 nm laser for excitation of the microparticles' fluorescence. The scattered light from the fluorescent microparticles, as well as Chlorella vulgaris and Chlorella protothecoides, were measured. Additionally, we analyzed the width and height of the measured signals generated as a... 

    Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition

    , Article Bioresource Technology ; Volume 239 , 2017 , Pages 378-386 ; 09608524 (ISSN) Mohamadzadeh Shirazi, H ; Karimi Sabet, J ; Ghotbi, C ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was...