Loading...
Search for: alginate
0.018 seconds
Total 113 records

    Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study

    , Article Materials Science and Engineering C ; Volume 113 , 2020 Afjoul, H ; Shamloo, A ; Kamali, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated... 

    Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2020 Bayat, A ; Ramazani Sa., A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, conductive sodium alginate/polyaniline/graphene (PAG) NGCs were fabricated utilizing a straightforward solution extrusion method. The 4 point-probe test revealed that the addition of PAG has increased the conductivity of the NGCs up to 9.7 × 10−3 S.cm−1. The results also showed a remarkable increase in the Young modulus and SEM images revealed that the suggested process could produce NGCs continuously and uniformly with desirable porosity. The Fourier-transform infrared spectroscopy spectrum proved a good interaction between PAG and the polymeric matrix. Furthermore, the addition of PAG slightly prevented biodegradation of the NGCs. Finally, the cell viability assay confirmed... 

    Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria

    , Article Applied Biochemistry and Biotechnology ; Volume 190, Issue 1 , 2020 , Pages 182-196 Sajadi Dehkordi, S ; Alemzadeh, I ; Vaziri, A. S ; Vossoughi, A ; Sharif University of Technology
    Springer  2020
    Abstract
    The present study aimed to improve the survivability of L. acidophilus encapsulated in alginate-whey protein isolate (AL-WPI) biocomposite under simulated gastric juice (SGJ) and simulated intestinal juice (SIJ). Microcapsules were prepared based on emulsification/internal gelation technique. Optimal compositions of AL and WPI and their ratio in the aqueous phase were evaluated based on minimizing mean diameter (MD) of the microcapsules and maximizing encapsulation efficiency (EE), survivability of cells under SGJ (Viability), and release of viable cells under SIJ (Release) using Box-Behnken experimental design. Optimal composition comprising 4.54% (w/v) AL, 10% (w/v) WPI, and 10% (v/v)... 

    Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery

    , Article Carbohydrate Research ; Volume 487 , 2020 Forouzandehdel, S ; Forouzandehdel, S ; Rezghi Rami, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The magnetic composite hydrogel was fabricated by the graft copolymerization of itaconic acid (IA) onto starch and Alginic acid in the presence graphene sheets (Gr) and Fe3O4 nanoparticles (Fe3O4@Gr-IA/St-Alg) for Guaifenesin (GFN) delivery and wound healing. The Fe3O4@Gr-IA/St-Alg biomaterial is a hydrogel network endowed the material with magnetic property. In addition, GFN not only achieved effectively bound to the magnetic hydrogel, but also released in a controlled manner. The using external magnetic field has significantly positive influence on the drug release rate. To close, these hydrogel drug carriers offer a favorable platform for magnetically targeted drug delivery as well as a... 

    A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application

    , Article Carbohydrate Polymers ; Volume 245 , 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the article, a bilayer nanocomposite scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) has been prepared via combining electrospinning, in situ gas foaming, in situ crosslinking and freeze drying methods. The physicochemical and mechanical properties, as well as thermal stability of the proposed composite, have been investigated by SEM, FTIR, XRD, tensile, and TGA analysis. The data indicate that structure and degree of crosslinking play a vital role in adjusting the physical and mechanical properties of composite scaffolds. Further, the authors find a favorable adipose-derived mesenchymal stem cell's (AMSC) attachment and distribution within this novel... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and... 

    Potential effects of alginate–pectin biocomposite on the release of folic acid and their physicochemical characteristics

    , Article Journal of Food Science and Technology ; Volume 57, Issue 9 , March , 2020 , Pages 3363-3370 Kiaei Pour, P ; Alemzadeh, I ; Vaziri, A. S ; Beiroti, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Potential effects of folates on the treatment of several human diseases like cognitive function, neural tube defects, coronary heart disease and certain kinds of cancers have been discovered. However, the stability of folic acid against adverse conditions is a great concern. The present study investigates various alginate (A)–pectin (P) gastrointestinal-resistant hydrogel to immobilize folic acid. This involves evaluating different compositions of alginate–pectin to achieve higher encapsulation efficiency and stability during simulated gastric (SG) and simulated intestinal (SI) conditions. Coated alginate hydrogels with pectin resulted significant (p < 0.05) better protection of folic acid... 

    Fluidic barriers in droplet-based centrifugal microfluidics: Generation of multiple emulsions and microspheres

    , Article Sensors and Actuators, B: Chemical ; Volume 311 , May , 2020 Madadelahi, M ; Madou, M. J ; Dorri Nokoorani, Y ; Shamloo, A ; Martinez Chapa, S. O ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Droplet generation is very important in biochemical processes such as cell encapsulation, digital PCR (Polymerase Chain Reaction), and drug delivery. In the present paper, a density-based method called “fluidic barrier” is introduced to produce multiple emulsions on a centrifugal microfluidic platform or Lab-on-a-CD (LOCD). We show that the density and the viscosity of the fluids involved are important parameters for predicting the characteristics of the droplets generated with this method. Moreover, we broadened this concept by using the fluidic barriers to separate reactive chemicals. As a proof of concept, alginate and CaCl2 solutions are separated by an oil barrier to control the... 

    Highly stretchable, self-adhesive, and self-healable double network hydrogel based on alginate/polyacrylamide with tunable mechanical properties

    , Article Journal of Polymer Science ; Volume 58, Issue 15 , 2020 , Pages 2062-2073 Pourjavadi, A ; Tavakolizadeh, M ; Hosseini, S. H ; Rabiee, N ; Bagherzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    A number of synthetic hydrogels suffer from low mechanical strength. Despite of the recent advances in the fabrication of tough hydrogels, it is still a great challenge to simultaneously construct high stretchability, and self-adhesive and self-healing capability in a hydrogel. Herein, a new type of double network hydrogel was prepared based on irreversible cross-linking of polyacrylamide chains and Schiff-base reversible cross-linking between glycidyl methacrylate-grafted ethylenediamine and oxidized sodium alginate (OSA). The combination of both cross-linkings and their synergistic effect provided a novel hydrogel with high strength, stretchable, rapid self-healing, and self-adhesiveness... 

    Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line)

    , Article Toxicology in Vitro ; Volume 65 , 2020 Movahedi Shad, P ; Zare Karizi, S ; Safaie Javan, R ; Mirzaie, A ; Noorbazargan, H ; Akbarzadeh, I ; Rezaie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Oxaliplatin (OXA) has been widely used for treatment of colorectal cancer. In this study, to enhance antitumor and apoptosis efficacy, OXA was encapsulated in a novel folate conjugated hyaluronic acid coated alginate nanogels (F/HA/AL/OXA). The F/HA/AL/OXA nanogels were prepared by cross-linking process. The physico-chemical properties of F/HA/AL/OXA nanogels were characterized using scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, dynamic light scattering, and fluorescent spectrophotometry. The in-vitro antitumor activity of free OXA, AL, HA/AL, HA/AL/OXA and F/HA/AL/OXA nanogels were assessed using MTT assay against colorectal cancer... 

    Comparison of the batch and breakthrough properties of stable and plain alginate microcapsules with a chelating resin and an ion exchanger in Ag+ adsorption

    , Article Industrial and Engineering Chemistry Research ; Volume 47, Issue 17 , 5 August , 2008 , Pages 6742-6752 ; 08885885 (ISSN) Outokesh, M ; Niibori, Y ; Mimura, H ; Ahmadi, S. J ; Sharif University of Technology
    2008
    Abstract
    A comparative study on the uptake properties of alginate microcapsules containing Cyanex 302 extractant, Lewatite TP 214 chelating resin, and Amberlite 200CT strongly acidic ion exchanger has been conducted using Ag+ as the target ion. The study resulted in an analytical formula, as well as three phenomenological breakthrough formulas that are also applicable in other fixed-bed operations. It also demonstrated a close similarity of the uptake properties of alginate microcapsules (MCs) and the chelating resins. Advantages of MCs over chelating resins include ease of preparation, ability to immobilize different extractants, and, most remarkably, an enormous distribution factor (Kd ≈ 106... 

    Synthesis and investigation of swelling behavior of grafted alginate/alumina superabsorbent composite

    , Article Starch/Staerke ; Volume 60, Issue 9 , 9 September , 2008 , Pages 457-466 ; 00389056 (ISSN) Pourjavadi, A ; Farhadpour, B ; Seidi, F ; Sharif University of Technology
    2008
    Abstract
    In this study a novel alginate-g-poly(acrylic acid)/alumina composite was synthesized and characterized. Preparation of the composite hydrogels involved free radical polymerization of a combination of alginate, acrylic acid (AA) and distilled water, in appropriate amounts and N,N-methylene bisacrylamide (MBA) as crosslinking agent. The composite formation was confirmed by Fourier transform infrared spectroscopic (FTIR). The surface morphologies of the synthesized hydrogels were assessed by scanning electron microscopy. Systematically, the different variables of the graft copolymerization were optimized to achieve maximum swelling capacity. The swelling of superabsorbent hydrogels was... 

    Temperature sensitive superabsorbent hydrogels from poly(N-t-butyl acrylamide-co-acrylamide) grafted on sodium alginate

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , December , 2008 , Pages 177-183 ; 10221360 (ISSN) Pourjavadi, A ; Samadi, M ; Ghasemzadeh, H ; Sharif University of Technology
    2008
    Abstract
    Temperature-sensitive hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), and sodium alginate were prepared by free radical polymerization method. Methylenebisacrylamide (MBA) and amonium persulfate (APS) were applied as water soluble crosslinker and initiator, respectively. The chemical structure of the hydrogels was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TCA) methods. Morphology of the samples was examined by scanning electron microscopy (SEM). By changing the initial TBA/AAm mole ratios, hydrogels with different swelling properties were obtained. The rate parameters were found to be 2.0, 2.4, and 3.5 min for the superabsorbents with AAm/TBA weight... 

    Co-Microencapsulation of Folic Acid and Iron

    , M.Sc. Thesis Sharif University of Technology Aali, Fatemeh (Author) ; Alemzadeh, Iran (Supervisor) ; Vossough, Manouchehr (Supervisor)
    Abstract
    This study aimed to prepare a type of microcapsule that microencapsulates folic acid and iron at the same time and protects these two substances against environmental and gastrointestinal conditions. Simultaneous release of these two nutrients has dual health properties and improves the efficiency of folic acid microencapsulation. In this study, biocomposites were formed containing alginate, pectin, and carboxymethylcellulose, and the microcapsules were synthesized by the ionization of calcium-alginate ions. Biocomposite optimization mixture with 13 experiments using experimental design software, optimal combination design method based on repopulation separator, restoring folic acid... 

    Milk cholesterol reduction using immobilized Lactobacillus acidophilus ATCC1643 in sodium-alginate

    , Article International Journal of Food Engineering ; Volume 4, Issue 8 , 2008 ; 15563758 (ISSN) Serajzadeh, S ; Alemzadeh, I ; Sharif University of Technology
    Walter de Gruyter GmbH  2008
    Abstract
    Lactobacillus acidophilus is one of the major microorganisms which are famous for their effects on cholesterol. In this study, we have investigated the effect of L. acidophilus ATCC 1643 on removing the milk cholesterol and additionally, we have immobilized L. acidophilus ATCC1643 cells in sodium-alginate and observed its effect on milk cholesterol removing. Also, we have researched about the effect of some factors including: bacteria cells number (both free and immobilized cells) and immobilized cells bead size on cholesterol removing rate and ultimately the extracted results were compared together. The results indicated that free cells could reduce cholesterol to lower than 0.5mg/100ml... 

    MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels

    , Article Carbohydrate Polymers ; Volume 66, Issue 3 , 2006 , Pages 386-395 ; 01448617 (ISSN) Pourjavadi, A ; Barzegar, Sh ; Mahdavinia, G. R ; Sharif University of Technology
    2006
    Abstract
    A novel superabsorbent hydrogel composed of carboxymethylcellulose (CMC) and sodium alginate (Na-Alg) was prepared by using methylenebisacrylamide (MBA) as a crosslinking agent. Ammonium persulfate (APS) was used as an initiator. For investigation of the effect of reaction variables on water absorbency of the hydrogels, the synthetic conditions were systematically optimized through studying the influential factors, including temperature, Na-Alg/CMC weight ratio and concentration of MBA and APS. Increase in MBA and APS concentration results in the decrease in water absorbency of the hydrogels. The water absorbency of the hydrogels increased with increasing of reaction temperature and... 

    Synthesis of an alginate-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with low salt sensitivity and high pH sensitivity

    , Article Journal of Applied Polymer Science ; Volume 101, Issue 5 , 2006 , Pages 2927-2937 ; 00218995 (ISSN) Bagheri Marandi, G ; Sharifnia, N ; Hosseinzadeh, H ; Sharif University of Technology
    2006
    Abstract
    This article describes the synthesis and swelling behavior of a superabsorbing hydrogel based on sodium alginate (NaAlg) and polyacrylonitrile (PAN). The physical mixture of NaAlg and PAN was hydrolyzed with a solution of NaOH to yield an alginate-poly(sodium acrylate-co-acrylamide) [Alg-poly(NaAA-co-AAm)] superabsorbent hydrogel. A proposed mechanism for hydrogel formation was suggested, and the structure of the product was established with Fourier transform infrared spectroscopy. The effects of reaction variables were systematically optimized to achieve a hydrogel with a swelling capacity as high as possible. Under the optimized conditions concluded, the maximum capacity of swelling in... 

    Full-polysaccharide superabsorbent hydrogels based on carboxymethylcellulose and sodium alginate

    , Article Journal of Polymer Materials ; Volume 23, Issue 1 , 2006 , Pages 61-69 ; 09738622 (ISSN) Hosseinzadeh, H ; Pourjavadi, A ; Madhavinia, G. R ; Sharif University of Technology
    2006
    Abstract
    A novel full-polysaccharide superabsorbent hydrogel was synthesized via chemical crosslinking of carboxymethylcellulose (CMC) and sodium alginate (Alg) using epichlorohydrine (ECH) as a crosslinker. A proposed mechanism for hydrogel formation was suggested and the structure of the product was established using FTIR spectroscopy. The influence of ECH concentration and Alg/CMC weight ratio as well as reaction time and temperature on water and saline (0.9 wt% NaCl) absorbency of the hydrogels were systematically investigated. Meanwhile, the overall activation energy for the crosslinking reaction between CMC and Alg polysaccharides was estimated to be 11.6 kj/mol. Under the optimised conditions... 

    Experimental and Numerical Study of The Production of Alginate Microgels and Cancer Spheroids by Droplet-Based Microfluidic

    , M.Sc. Thesis Sharif University of Technology Rezaeian, Masoud (Author) ; Shamloo, Amir (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Significant advances in biotechnology have led to the emergence of a cost-effective way with less ethical issues to study disease, organ functions, tumors, and their response to drugs besides studying on animals. Microfluidic devices and organ on a chip (tumor on a chip) were introduced to remove those obstacles. Organ on a chip is a powerful tool for studying different types of tissues and simulating diseases, especially cancers, for biological and medical applications. Organ (tumor) on a chip is considered as a smaller scale of the real organ or tumor and it causes to the real-time study of tissues and their functions more accurately. In this study, to fabricate a droplet-based... 

    Preparation of Antibacterial Silver, PVA, Na Alginate Nanocomposites Via Gamma Irradiation

    , M.Sc. Thesis Sharif University of Technology Eghbalifam, Naimeh (Author) ; Frounchi, Masoud (Supervisor) ; Dadbin, Susan (Supervisor)
    Abstract
    In this research, polyvinyl alcohol/ sodium alginate/ nano silver nanocomposite films were fabricated by solution casting method via gamma irradiation. The purpose of using gamma radiation was reduction of silver nitrate and synthesis of silver nanoparticles. Formation of silver nanoparticles was proved by ultra violet- visible spectroscopy (UV-Vis) and x-ray diffraction (XRD) tests. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) were used to study morphology, size and distribution of silver nanoparticles. Chemical structure, thermal behavior and mechanical properties of nanocomposites were characterized by fourier transform infrared spectroscopy (FTIR), differential...