Loading...
Search for: alginate
0.011 seconds
Total 113 records

    Cell-Seeded biomaterial scaffolds: the urgent need for unanswered accelerated angiogenesis

    , Article International Journal of Nanomedicine ; Volume 17 , 2022 , Pages 1035-1068 ; 11769114 (ISSN) Shokrani, H ; Shokrani, A ; Sajadi, S. M ; Seidi, F ; Mashhadzadeh, A. H ; Rabiee, N ; Saeb, M. R ; Aminabhavi, T ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2022
    Abstract
    One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular... 

    Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 180 , 2021 , Pages 692-708 ; 01418130 (ISSN) Mousavi, A ; Mashayekhan, S ; Baheiraei, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and... 

    Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2020 Bayat, A ; Ramazani Sa., A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, conductive sodium alginate/polyaniline/graphene (PAG) NGCs were fabricated utilizing a straightforward solution extrusion method. The 4 point-probe test revealed that the addition of PAG has increased the conductivity of the NGCs up to 9.7 × 10−3 S.cm−1. The results also showed a remarkable increase in the Young modulus and SEM images revealed that the suggested process could produce NGCs continuously and uniformly with desirable porosity. The Fourier-transform infrared spectroscopy spectrum proved a good interaction between PAG and the polymeric matrix. Furthermore, the addition of PAG slightly prevented biodegradation of the NGCs. Finally, the cell viability assay confirmed... 

    Biocompatible conductive alginate/polyaniline-graphene neural conduits fabricated using a facile solution extrusion technique

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 70, Issue 7 , 2021 , Pages 486-495 ; 00914037 (ISSN) Bayat, A ; Ramezani Saadat Abadi. A ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this study, conductive sodium alginate/polyaniline/graphene (PAG) NGCs were fabricated utilizing a straightforward solution extrusion method. The 4 point-probe test revealed that the addition of PAG has increased the conductivity of the NGCs up to 9.7 × 10−3 S.cm−1. The results also showed a remarkable increase in the Young modulus and SEM images revealed that the suggested process could produce NGCs continuously and uniformly with desirable porosity. The Fourier-transform infrared spectroscopy spectrum proved a good interaction between PAG and the polymeric matrix. Furthermore, the addition of PAG slightly prevented biodegradation of the NGCs. Finally, the cell viability assay confirmed... 

    A superabsorbent hydrogel network based on poly ((2-dimethylaminoethyl) methacrylate) and sodium alginate obtained by γ-radiation: Synthesis and characterization

    , Article Iranian Polymer Journal (English Edition) ; Volume 21, Issue 12 , 2012 , Pages 829-836 ; 10261265 (ISSN) Bardajee, G. R ; Hooshyar, Z ; Zehtabi, F ; Pourjavadi, A ; Sharif University of Technology
    2012
    Abstract
    In this study, the synthesis and characterization of a novel nano-porous superabsorbent hydrogel with high water swelling capacity is described. A nano-porous hydrogel was prepared by employing (2-dimethylaminoethyl) methacrylate (PDMAEMA) as a pH sensitive monomer and sodium alginate (SA) as a water soluble polysaccharide under γ-ray irradiation. The polymerization reaction was performed at room temperature in the absence of chemically toxic crosslinking agent and initiators. The interactive parameters including biopolymer backbone concentration, monomer concentration and γ-irradiation dose were selected as major factors in the synthesis of superabsorbent and three levels for each factor... 

    A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads

    , Article Particuology ; Volume 9, Issue 5 , 2011 , Pages 480-485 ; 16742001 (ISSN) Ahmadi, S. J ; Outokesh, M ; Hosseinpour, M ; Mousavand, T ; Sharif University of Technology
    Abstract
    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure. In the first step, copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition. Then, they were immobilized in the polymeric matrix of calcium alginate, and followed by high-temperature calcination in an air stream as the third step, in which carbonaceous materials were oxidized, to result in a pebble-type catalyst of high porosity. The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm, X-ray diffractometry (XRD), and thermo... 

    A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application

    , Article Carbohydrate Polymers ; Volume 245 , 2020 Hajiabbas, M ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the article, a bilayer nanocomposite scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) has been prepared via combining electrospinning, in situ gas foaming, in situ crosslinking and freeze drying methods. The physicochemical and mechanical properties, as well as thermal stability of the proposed composite, have been investigated by SEM, FTIR, XRD, tensile, and TGA analysis. The data indicate that structure and degree of crosslinking play a vital role in adjusting the physical and mechanical properties of composite scaffolds. Further, the authors find a favorable adipose-derived mesenchymal stem cell's (AMSC) attachment and distribution within this novel... 

    Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation

    , Article International Journal of Biological Macromolecules ; Volume 80 , 2015 , Pages 170-176 ; 01418130 (ISSN) Eghbalifam, N ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Abstract
    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5. kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15. kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM... 

    Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 215 , 2022 ; 09277765 (ISSN) Riahi, Z ; Priyadarshi, R ; Rhim, J. W ; Lotfali, E ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Sulfur quantum dots (SQDs) were fabricated using a facile hydrothermal method and used for the preparation of functional food packaging film and compared the properties with other sulfur-based fillers like elemental sulfur (ES) and sulfur nanoparticles (SNP). The SQDs have an average size of 5.3 nm and were very stable in aqueous suspension. Unlike other sulfur-based fillers, the SQD showed high antioxidant, antibacterial and antifungal activity, but no cytotoxicity was found for L929 mouse fibroblasts even after long-term exposure of 48 h. When sulfur-based fillers were added to the alginate film, SQD was more evenly dispersed in the polymer matrix than SNP and ES. The addition of SQD to... 

    Alginate-based biodegradable superabsorbents as candidates for diclofenac sodium delivery systems

    , Article Journal of Applied Polymer Science ; Volume 118, Issue 4 , 2010 , Pages 2015-2023 ; 00218995 (ISSN) Pourjavadi, A ; Zeidabadi, F ; Barzegar, Sh ; Sharif University of Technology
    2010
    Abstract
    Novel types of highly swelling hydrogels were prepared by grafting crosslinked polyacrylamide-co-poly-2-acrylamido-2-methylpropane sulfonic acid (PAAm-co-PAMPS) chains onto sodium alginate (Na-Alg) through a free radical polymerization method. The superabsorbent formation was confirmed by Fourier transform infrared spectroscopic (FTIR). The controlled release behavior of diclofenac sodium (DS) from superabsorbent polymer was factinvestigated, and shown that the release profiles of DS from superabsorbent polymer were slow in simulated gastric fluid (SGF, pH 1.2) over 3 h, but nearly all of the initial drug content was released in simulated intestinal fluid (SIF, pH 7.4) within 21 h after... 

    Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering

    , Article Journal of Biomaterials Applications ; Volume 36, Issue 5 , 2021 , Pages 803-817 ; 08853282 (ISSN) Shojarazavi, N ; Mashayekhan, S ; Pazooki, H ; Mohsenifard, S ; Baniasadi, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was... 

    Adsorption behavior of toxic metal Ions on nano-structured CuO granules

    , Article Separation Science and Technology (Philadelphia) ; Volume 47, Issue 7 , 2012 , Pages 1063-1069 ; 01496395 (ISSN) Ahmadi, S. J ; Sadjadi, S ; Hosseinpour, M ; Sharif University of Technology
    2012
    Abstract
    In this study, copper oxide nano particles were synthesized by batchwise supercritical hydrothermal method. After preparation of CuO nano particles, they were immobilized into the porous matrix of sodium alginate. The drying process formed a very porous structure that is useful for enhancing of adsorption activity. Produced CuO particles were characterized by X-ray diffractometery (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET for measuring the surface area. The prepared materials were then used as adsorbent in the removal of toxic metal ions in aqueous solution. To optimize the adsorption system, the effect of various parameters such as adsorbent...