Loading...
Search for: alkalinity
0.01 seconds
Total 142 records

    Identification of catecholamine neurotransmitters using fluorescence sensor array

    , Article Analytica Chimica Acta ; Volume 917 , April , 2016 , Pages 85–92 ; 00032670 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual... 

    Effect of pH on aerobic granulation and treatment performance in sequencing batch reactors

    , Article Chemical Engineering and Technology ; Volume 38, Issue 5 , 2015 , Pages 851-858 ; 09307516 (ISSN) Rezasoltani, S ; Shayegan, J ; Jalali, S ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    Two sequencing batch reactors were operated to investigate the effect of influent alkalinity and reactor pH on aerobic granulation. In the first reactor R1 with high influent alkalinity the pH was adjusted in the neutral range, and in the second reactor R2 with low alkalinity the pH was held within the acidic range. The R1-dominating species were bacteria and the appearance time of granules was three weeks after reactor start-up. On the other hand, the acidic environment of R2 provided favorable conditions for fungal growth, and rapid granule formation occurred within the first week of operation. The varying microbial structure of granules resulted in different reactor performance in terms... 

    Pore-level experimental investigation of ASP flooding to recover heavy oil in fractured five-spot micromodels

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; June , 2015 , Pages 1033-1058 ; 9781510811621 (ISBN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Although Alkaline-Surfactant-Polymer (ASP) flooding is proved to be efficient for heavy oil recovery, the displacement mechanisms/efficiency of this process should be discussed further in fractured porous media especially in typical waterflood geometrical configurations such as five-spot injection-production pattern. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels which were initially saturated with heavy oil. The ASP flooding tests were conducted at constant injection flow rates and different fracture geometrical characteristics were used. The ASP solutions constituted of five polymers, two surfactants and three alkaline types. The results... 

    Al2O3-ZrO2 nanostructured coatings using DC plasma electrolytic oxidation to improve tribological properties of Al substrates

    , Article Applied Surface Science ; Volume 356 , November , 2015 , Pages 927-934 ; 01694332 (ISSN) Barati, N ; Meletis, E. I ; Golestani Fard, F ; Yerokhin, A ; Rastegari, S ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Alumina-zirconia nanostructured coatings were formed on 7075 Al alloy through Plasma Electrolytic Oxidation (PEO) operated in aDC potentiostatic mode. The composite coatings were produced in the range of 425-500 V in an alkaline electrolyte containing 4 g/LK2ZrF6. Tribological properties of coatings were investigated using dry sliding wear test against WC balls with a pin-on-disc tribometer. Wear rates were evaluated using optical profilometer. It was shown that the nanostructured alumina-zirconia composite coatings can be formed at voltages 450 V. The coating thickness and roughness were in the range of 15.2-24.2 μm and 0.68-2.35 μm, respectively. The distribution of Al, Zr and O in the... 

    Electrochemical oxidation of saccharose on copper (hydr)oxide-modified electrode in alkaline media

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 31, Issue 11 , 2010 , Pages 1351-1357 ; 02539837 (ISSN) Jafarian, M ; Rashvand Avei, M ; Danaee, I ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2010
    Abstract
    A stable copper (hydr)oxide-modified electrode was prepared in 0.5 mol/L NaOH solution by cyclic voltammetry in the range of -250 to 1000 mV. It can be used for electrochemical studies in the range of -250 to 1000 mV without interfering peaks because there is no oxidation of copper. During an anodic potential sweep, the electro-oxidation of saccharose on Cu occurred by the formation of CuIII and this reaction also occurred in the early stages of the reversed cycle until it is stopped by the negative potentials. A mechanism based on the electro-chemical generation of CuIII active sites and their subsequent consumption by saccharose was proposed, and the rate law and kinetic parameters were... 

    A preliminary study of the electro-catalytic reduction of oxygen on Cu-Pd alloys in alkaline solution

    , Article Journal of Electroanalytical Chemistry ; Volume 647, Issue 1 , 2010 , Pages 66-73 ; 15726657 (ISSN) Gobal, F ; Arab, R ; Sharif University of Technology
    2010
    Abstract
    Copper-palladium alloys of different compositions are electrodeposited on nickel from aqueous solutions. These alloys are characterized by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The catalytic activity of these alloys toward oxygen reduction reaction (ORR) in alkaline solution is investigated using rotating disk electrode (RDE). The number of electrons transferred per O2 molecule (n) obtained at different potentials is close to 2 at low overpotential indicating HO2- formation and gradually increases to 4 at higher overpotentials indicating full reduction to OH-. It is shown that Cu-Pd alloys are better electrocatalysts than Pd with Pd-Cu-1 having 24.5%... 

    Simulation of SO2 absorption in a venturi scrubber

    , Article Chemical Engineering Communications ; Volume 197, Issue 7 , Feb , 2010 , Pages 934-952 ; 00986445 (ISSN) Taheri, M ; Mohebbi, A ; Taheri, A ; Sharif University of Technology
    2010
    Abstract
    In this study, a three-dimensional mathematical model, based on a nonuniform droplet concentration distribution, has been developed to simulate gas absorption in a venturi scrubber. The mass transfer process was illustrated by assuming the liquid phase as a combination of droplets and film. The flow, just as the annular two-phase flow, includes a flow of liquid film layer on the walls and a flow of gas and liquid drops in the core. Peclet number was determined using experimental data reported by Viswanathan et al. (1984) for distribution of droplets across the cross section of the scrubber. The mathematical model for gas absorption was justified by comparing the theoretical predictions with... 

    Optimization of parameters for synthesis of mfi nanoparticles by taguchi robust design

    , Article Chemical Engineering and Technology ; Volume 33, Issue 6 , 2010 , Pages 902-910 ; 09307516 (ISSN) Torkman, R ; Soltanieh, M ; Kazemian, H ; Sharif University of Technology
    2010
    Abstract
    MFI-type zeolite was successfully synthesized by hydrothermal crystallization of clear synthesis mixtures. A statistical experimental design method (the Taguchi method with an L8 orthogonal array) was implemented to optimize the experimental conditions for the preparation of MFI nanocrystals with respect to particle size and distribution as the desirable properties. In the Taguchi experimental design, crystallization temperature, water content, template/silica molar ratio, aluminum content, as well as the presence of alkaline cations were chosen as significant parameters affecting the properties. It was shown that water and aluminum content of the synthesis solution were the most important... 

    A preliminary study of the electro-oxidation of l-ascorbic acid on polycrystalline silver in alkaline solution

    , Article Journal of Power Sources ; Volume 195, Issue 1 , 2010 , Pages 165-169 ; 03787753 (ISSN) Majari Kasmaee, L ; Gobal, F ; Sharif University of Technology
    2010
    Abstract
    Electrochemical oxidation of l-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10-5 cm2 s-1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm-2 and 4 mF cm-2 as well as the adsorption and decomposition resistances (rates). © 2009 Elsevier B.V. All... 

    A low cost and highly active non-noble alloy electrocatalyst for hydrazine oxidation based on nickel ternary alloy at the surface of graphite electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 763 , 2016 , Pages 134-140 ; 15726657 (ISSN) Jafarian, M ; Rostami, T ; Mahjani, M. G ; Gobal, F ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    The electrocatalytic oxidation of hydrazine was studied over Ni, Cu, Co and Ni-based ternary alloy on graphite electrodes in alkaline solution. The catalysts were prepared by cycling the graphite electrode in solutions containing Ni, Cu and Co ions at cathodic potentials. The synergistic effects and the catalytic activity of the modified electrodes were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). It was found that, in the presence of hydrazine, the modified Ni-based ternary alloy electrode (G/NiCuCo) exhibited a good catalytic activity for the oxidation of hydrazine at a reduced overpotential and it has a significant high... 

    Heavy oil recovery using ASP flooding: A pore-level experimental study in fractured five-spot micromodels

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 4 , 2016 , Pages 779-791 ; 00084034 (ISSN) Sedaghat, M ; Mohammadzadeh, O ; Kord, S ; Chatzis, I ; Sharif University of Technology
    Wiley-Liss Inc  2016
    Abstract
    Although alkaline-surfactant-polymer (ASP) flooding has proven efficient for heavy oil recovery, the displacement mechanisms and efficiency of this process should be discussed further in fractured porous media. In this study, several ASP flooding tests were conducted in fractured glass-etched micromodels with a typical waterflood geometrical configuration, i.e. five-spot injection-production pattern. The ASP flooding tests were conducted at constant injection flow rates but different fracture geometrical characteristics. The ASP solutions consisted of five polymers, two surfactants, and three alkaline types. It was found that using synthetic polymers, especially hydrolyzed polyacrylamide... 

    Environmental effects on the bond at the interface of fiber-reinforced polymer and masonry brick

    , Article Journal of Reinforced Plastics and Composites ; Volume 36, Issue 18 , 2017 , Pages 1355-1368 ; 07316844 (ISSN) Toufigh, V ; Yarigarravesh, M ; Mofid, M ; Sharif University of Technology
    Abstract
    This study examined the bond at the interface of masonry bricks and fiber-reinforced polymer when exposed to five environments. Three fabrics (aramid, carbon, and glass) and one type of epoxy resin were used. A total of 375 brick-fiber-reinforced polymer specimens were made using wet lay-up technic and exposed to chemical solutions at four pH values (2.5, 7, 10, and 12.5) and substitute seawater. The effect of dry heat on the bond at the interface was also investigated. Single-lap shear tests were then carried out on the samples after 2, 4, 6, 8, 10, and 13 weeks of exposure. The experimental results indicated that freshwater and seawater had a considerable effect on the bond strength of... 

    Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale

    , Article RSC Advances ; Volume 7, Issue 21 , 2017 , Pages 12923-12930 ; 20462069 (ISSN) Naseri, N ; Solaymani, S ; Ghaderi, A ; Bramowicz, M ; Kulesza, S ; Ţălu, Ş ; Pourreza, M ; Ghasemi, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Nowadays, fossil fuel limitations and environmental concerns push researchers to find clean and renewable energy resources. Solar hydrogen production via water splitting reactions in electrochemical and/or photo-electrochemical systems has been accepted as a promising route and efficient electrocatalysts are involved in both. Here, cobalt nanoflakes with an oxide/hydroxide surface and a conductive metallic core are grown on commercially available steel mesh modified with carbon based nanocomposites as a support layer. The portion of reduced graphene oxide sheets was changed from 0 to 100 wt% and the correlation of this concentration with the surface morphology and electro-catalytic activity... 

    A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples

    , Article Analytica Chimica Acta ; Volume 1039 , 2018 , Pages 124-131 ; 00032670 (ISSN) Farahmand Nejad, M. A ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Owing to its dual role as a hormone and neurotransmitter, norepinephrine (NE) detection is of great significance to biomedical diagnosis. In the present work, we have explored intense green fluorescence of poly (norepinephrine) (PNE) nanoparticles synthesized by oxidizing NE in alkaline condition, in combination with red fluorescent bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) for naked-eye detection of NE. The effect of sodium hydroxide on the emission behavior of NE was studied. The surface morphology and optical properties of PNE nanoparticles were characterized by UV–Vis, fluorescence, FTIR, Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS)... 

    Experimental and analytical evaluation of FRPs bonded to masonry-long term

    , Article Surface and Coatings Technology ; Volume 344 , 25 June , 2018 , Pages 729-741 ; 02578972 (ISSN) Yarigarravesh, M ; Toufigh, V ; Mofid, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This research investigated the long-term environmental effects on the bond at the interface between fiber-reinforced polymer (FRP) and a masonry brick. Seven types of FRP fabrics were used and placed on the masonry brick using the wet lay-up technique. Unidirectional and bidirectional fibers made of aramid, carbon, and glass and also combination of these fabrics were used. A total of 525 specimens were exposed to five chemical solutions with pH values of 2.5, 7, 10, 12.5 and substitution sea water for 1, 3, 6, 9 and 12 months. A chamber was also used to simulate the ultraviolent (UV) radiation on the specimens. A series of single-lap shear tests were performed on these specimens to determine... 

    The modification of cast AL-Mg2Si in situ mmc by lithium

    , Article Shape Casting: 3rd International Symposium 2009 - Held During TMS 2009 Annual Meeting and Exhibition, San Francisco, CA, 15 February 2009 through 19 February 2009 ; 2009 , Pages 165-172 ; 9780873397346 (ISBN) Hadian, R ; Emamy, M ; Campbell, J ; Aluminum Committee of the Light Metals Division, LMD; Aluminum Committee of the Light Metals Division, LMD; Minerals, Metals , Materials Society, TMS ; Sharif University of Technology
    2009
    Abstract
    The effects of both Lithium modification and cooling rate on the microstructure and tensile properties of an in-situ prepared Al-15% Mg 2Si composite were investigated. Adding 0.3%Li reduced the average size of Mg2Si primary particles from ∼30 μm to ∼6 μm. The effect of cooling rate was investigated by the use of a mold with different section thickness from 3 to 9 mm. The results show a refinement of primary particle size as a result of both Li additions and increased cooling rate, and their effects were additive. Similarly, both effects increased UTS and elongation values. The refinement by Li and enhanced cooling rate is discussed in terms of an analogy with the effect of Sr and cooling... 

    A new eco-friendly and efficient mesoporous solid acid catalyst for the alkylation of phenols and naphthols under microwave irradiation and solvent-free conditions

    , Article Scientia Iranica ; Volume 16, Issue 2 C , 2009 , Pages 81-88 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Akhlaghi, M ; Hojabri, L ; Dekamin, M. G ; Sharif University of Technology
    2009
    Abstract
    The catalytic activity of a mixture of ZnCl2: AlCl3 supported on silica gel was evaluated for the alkylation of phenols with benzyl alcohol, tret-butyl alcohol and styrene under microwave irradiation and solvent-free conditions. The catalyst preparation method, its characterization and reusability, were reported. The effect of the phenol to benzyl alcohol ratio and the time of reaction on the phenol conversion and distribution of products was investigated. A conversion percentage up to 97% was achieved when hydroquinone was used. A selective ortho- directed alkylation for phenol, α-naphthol and β-naphthol was observed. © Sharif University of Technology, December 2009  

    ZIF-8/PEDOT @ flexible carbon cloth electrode as highly efficient electrocatalyst for oxygen reduction reaction

    , Article International Journal of Hydrogen Energy ; 2019 ; 03603199 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Design and fabrication of highly efficient and low-cost oxygen reduction reaction (ORR) electrocatalysts is of paramount importance for practical applications. Herein, we proposed a cost-effective, metal-free catalyst based on ZIF-8 metal-organic framework nanoparticles/electro-polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film on the surface of flexible carbon cloth (CC) electrode (ZIF-8/PEDOT/CC) via a two-step procedure. For this purpose, worm-like PEDOT nanostructures were deposited on the surface of carbon fibers using a pulse electro-polymerization technique followed by facile growth of ZIF-8 polyhedra nanoparticles via a chemical bath deposition method. The ORR measurements in... 

    ZIF-8/PEDOT @ flexible carbon cloth electrode as highly efficient electrocatalyst for oxygen reduction reaction

    , Article International Journal of Hydrogen Energy ; 2019 ; 03603199 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Design and fabrication of highly efficient and low-cost oxygen reduction reaction (ORR) electrocatalysts is of paramount importance for practical applications. Herein, we proposed a cost-effective, metal-free catalyst based on ZIF-8 metal-organic framework nanoparticles/electro-polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) film on the surface of flexible carbon cloth (CC) electrode (ZIF-8/PEDOT/CC) via a two-step procedure. For this purpose, worm-like PEDOT nanostructures were deposited on the surface of carbon fibers using a pulse electro-polymerization technique followed by facile growth of ZIF-8 polyhedra nanoparticles via a chemical bath deposition method. The ORR measurements in... 

    Application of nanostructured aluminium titanate (Al2TiO5) photocatalyst for removal of organic pollutants from water: Influencing factors and kinetic study

    , Article Materials Chemistry and Physics ; Volume 256 , 2020 Azarniya, A ; Soltaninejad, M ; Zekavat, M ; Bakhshandeh, F ; Madaah Hosseini, H. R ; Amutha, C ; Ramakrishna, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, aluminum titanate (Al2TiO5)-based nanostructure with the outstanding photocatalytic performance was prepared via the simple citrate sol-gel method. The effects of thee operational variables such as pH, temperature, catalyst dosage, and initial dye concentration on the photodegradation efficiency of methylene blue (MB) were explored in some details. The results showed that compared to TiO2, AT benefits a superior photocatalytic activity due to its narrow band gap (2.88 eV) and low recombination rate of charge carriers. Increasing the wastewater temperature from 25 to 60 °C can improve the degradation percent from 22.15 to 52%. Based on the thermokinetic calculations, the...