Loading...
Search for: aluminum-oxide
0.01 seconds
Total 91 records

    In vitro study: Bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; Volume 405 , 2021 ; 02578972 (ISSN) Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    Effect of CVD parameters on hydrogen permeation properties in a nano-composite SiO 2-Al 2O 3 membrane

    , Article Journal of Membrane Science ; Volume 423-424 , 2012 , Pages 530-535 ; 03767388 (ISSN) Amanipour, M ; Ganji Babakhani, E ; Safekordi, A ; Zamaniyan, A ; Heidari, M ; Sharif University of Technology
    2012
    Abstract
    Tubular ceramic membranes were synthesized by depositing a dense layer of silica-alumina on top of a multilayer substrate using co-current chemical vapor deposition (CVD) method. The multilayer substrate was prepared by coating with a series of bohemite sols with certain particle sizes. Cross-sectional and surface images obtained from high resolution FESEM showed that the intermediate layer had a thickness of about 1μm and the top selective layer was uniform and dense with a thickness of less than 100nm. Permeance tests, which were carried out with H 2, CO 2, N 2 and CH 4 at a high temperature range of 923-1073K, indicated that gas permeation took place via different mechanisms through... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new... 

    Diffuse emissions of particles from iron ore piles by wind erosion

    , Article Environmental Engineering Science ; Volume 28, Issue 5 , 2011 , Pages 333-339 ; 10928758 (ISSN) Afshar Mohajer, N ; Torkian, A ; Sharif University of Technology
    Abstract
    Industrial air pollution from point and nonpoint sources of steel complexes has drawn increasingly more public attention in the past decades. Previous research efforts have been more concentrated on point sources of particulate emissions from these complexes. However, wind-induced particulate emissions from iron ore storage piles not only result in ambient air pollution but also increase economic adverse effects to the industry by loss of process raw materials. Experiments were conducted to assess the impact of wind speed and humidity on particulate emission rates from iron ore storage piles. A wind-generating system and specific iron ore, experimental piles (L:W:H of 30:11.5:5 cm) were... 

    Microstructure and mechanical properties of oxide-dispersion strengthened al6063 alloy with ultra-fine grain structure

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 42, Issue 3 , 2011 , Pages 816-824 ; 10735623 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (∼2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains... 

    Synthesis of dimethyl ether over modified H-mordenite zeolites and bifunctional catalysts composed of Cu/ZnO/ZrO2 and modified H-mordenite zeolite in slurry phase

    , Article Catalysis Letters ; Volume 129, Issue 1-2 , 2009 , Pages 111-118 ; 1011372X (ISSN) Khandan, N ; Kazemeini, M ; Aghaziarati, M ; Sharif University of Technology
    2009
    Abstract
    Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over various catalysts, and via direct CO hydrogenation over hybrid catalysts composed of Al-modified H-Mordenite zeolite and Cu/ZnO/ZrO 2. H-Mordenite zeolite exhibited the highest activity in dehydration of methanol. However, its selectivity toward dimethyl ether was rather low. For this reason, the H-Mordenite was modified. Modification of zeolites was performed by wet impregnation method and considered catalysts were characterized by AAS, XRD and NH3-TPD analyses. Results of catalytic tests indicated that H-Mordenite modified with 8 wt% aluminum oxide was the best catalyst for synthesis of dimethyl ether from... 

    In vitro study: bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS

    , Article Surface and Coatings Technology ; 2020 Ahmadi, R ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    To improve the biocompatibility and corrosion resistance of 316L SS (Stainless Steel) metal implants, HAp(hydroxyapatite)/TiO2/Al2O3 nanocomposite coating was created using dip sol-gel method sintered at 550 °C. The weight percentage of TiO2+ Al2O3 in these coatings was 20, 30, and 40% wt. In this study, characterization was performed using FTIR (Fourier-Transform Infrared Spectroscopy), XRD, FE-SEM (Field Emission Scanning Electron Microscope), EDS (Energy Dispersive Spectroscopy), DLS (Dynamic Light Scattering), Pull-off, and AFM (Atomic Force Microscopy) analysis. The potentiodynamic polarization and EIS (Electrochemical Impedance Spectroscopy) were performed in the simulated body fluid... 

    Light olefin production on the Co-Ni catalyst: Calcination conditions, and modeling and optimization of the process conditions by a statistical method

    , Article New Journal of Chemistry ; Volume 44, Issue 18 , 2020 , Pages 7467-7483 Arsalanfar, M ; Akbari, M ; Mirzaei, N ; Abdouss, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    The present work is comprised of two main parts. In part 1 the Co-Ni/γ-Al2O3 catalyst was prepared using a sol-gel procedure. Then the effect of calcination variables including the calcination temperature and time on the catalytic performance for production of light olefins was investigated and optimized. The obtained results have shown that the catalyst which was calcined at 550 °C for 6 h has revealed the better catalytic performance for production of light olefins. In part 2 the effect of process conditions including the reaction temperature, H2/CO feed ratio and total reaction pressure on the catalytic performance (CO conversion%, (C2-C4) selectivity% and C5+ selectivity%) was... 

    Application of numerical simulation to solid phase-microextraction for decreasing of extraction time of pyrene and phthalate esters on solid coatings

    , Article Journal of Chromatography A ; Volume 1673 , 2022 ; 00219673 (ISSN) Jafari, M ; Jamshidian, M ; Habibi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Reynolds-Averaged Navier-Stokes (RANS) approach with the k-ε closure model is employed for the first time to simulate direct Solid-Phase Micro-Extraction (SPME) computationally. Simulations are performed by using COMSOL Multiphysics in order to examine methods to decrease the extraction time. Experiments are also conducted to support data obtained from the numerical framework. Di-n-Butyl Phthalate (DNBP) and etched steel wire are chosen as the analyte and the adsorbent, respectively. Stirring rate, fiber's location, stirrer magnet's size, and the method of sample rotation are examined to decrease the extraction time. In addition, the effects of adding a baffle to the vial and implementing a... 

    Oxidation of toluene in humid air by metal oxides supported on Γ-alumina

    , Article Journal of Hazardous Materials ; Volume 333 , 2017 , Pages 293-307 ; 03043894 (ISSN) Esmaeilirad, M ; Zabihi, M ; Shayegan, J ; Khorasheh, F ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Monometallic and bimetallic supported metal oxides catalysts on γ-alumina were prepared by heterogeneous deposition-precipitation. The γ-alumina used as a support was synthesized by the sol-gel and the co-precipitation methods. Supports and catalysts were characterized by Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The performance of the prepared catalysts was studied for total oxidation of toluene in air at different relative humidity and oxidation temperatures. Efficiency of bimetallic catalysts for deep oxidation of toluene was... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under...