Loading...
Search for: animal-cell
0.007 seconds
Total 58 records

    Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 271-279 ; 09277765 (ISSN) Hatamie, S ; Ahadian, M. M ; Ghiass, M. A ; Iraji zad, A ; Saber, R ; Parseh, B ; Oghabian, M. A ; Shanehsazzadeh, S ; Sharif University of Technology
    Elsevier 
    Abstract
    Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15 nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and... 

    Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice

    , Article Journal of Drug Delivery Science and Technology ; Volume 65 , 2021 ; 17732247 (ISSN) Hatamie, S ; Balasi, Z. M ; Ahadian, M. M ; Mortezazadeh, T ; Shams, F ; Hosseinzadeh, S ; Sharif University of Technology
    Editions de Sante  2021
    Abstract
    Herein, the graphene oxide (GO)/cobalt ferrite nanoparticles were used to apply the heat treatment on the breast cancer cell line of MCF7. The synthesized nanoparticles were evaluated before in vitro and in vivo studies, using transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), thermal property and relaxivity measurement. The nanoparticles showed a diameter of 5 nm with the ferrimagnetic property. Also, the nanoparticles were well distributed on the GO nanosheets. The related peaks of cobalt ferrite nanoparticles were approved by using XRD and XPS assays. During the in vitro investigations, IC50 with... 

    Graphene oxide negatively regulates cell cycle in embryonic fibroblast cells

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 6201-6209 Hashemi, E ; Akhavan, O ; Shamsara, M ; Ansari Majd, S ; Sanati, M. H ; Daliri Joupari, M ; Farmany, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Unique properties of graphene and its derivatives make them attractive in the field of nanomedicine. However, the mass application of graphene might lead to side effects, which has not been properly addressed in previous studies, especially with regard to its effect on the cell cycle. Methods: The effect of two concentrations (100 and 200 μg/mL) of nano-and microsized graphene oxide (nGO and mGO) on apoptosis, cell cycle, and ROS generation was studied. The effect of both sizes on viability and genotoxicity of the embryonic fibroblast cell cycle was evaluated. MTT and flow cytometry were applied to evaluate the effects of graphene oxide (GO) nanosheets on viability of cells.... 

    Synchronization of two coupled pacemaker cells based on the phase response curve

    , Article Biomedical Signal Processing and Control ; Volume 4, Issue 1 , 2009 , Pages 57-66 ; 17468094 (ISSN) Gholizade Narm, H ; Azemi, A ; Khademi, M ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    In this paper, the synchronization of a pair of pacemaker cells as Sino-Atrial (SA) and Atrio-Ventricullar (AV) nodes have been studied and a new approach for synchronization, based on the concept of Phase Response Curve (PRC), has been proposed. The paper starts with presenting the necessary and sufficient conditions for synchronization in terms of the PRC parameters. Such conditions are time dependent and thus, the paper proceeds with deriving some sufficient conditions, which are not time dependent. The time-delay between the firing time of SA node and when it reaches the AV node is also considered. When the conditions for spontaneous synchronization are not valid, the synchronization is... 

    Design and fabrication of a novel microfluidic system for enrichment of circulating tumor cells with the assistance of computer simulations

    , Article Avicenna Journal of Medical Biotechnology ; Volume 11, Issue 4 , 2019 , Pages 277-284 ; 20082835 (ISSN) Dorrigiv, D ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Avicenna Research Institute  2019
    Abstract
    Background: Cancer is the first cause of death in developed countries. The heterogeneous nature of cancer requires patient-specified treatment plans. One reliable approach is collecting Circulating Tumour Cells (CTCs) and using them for prognosis and drug response assessment purposes. CTCs are rare and their separation from normal cell requires high-accuracy methods. Methods: A microfluidic cell capture device to separate CTCs from peripheral blood is presented in this study. The CTC separation device applies hydrodynamic forces to categorize cells according to their sizes. The proposed device is designed and evaluated by numerical simulations and validated experimentally. The simulation... 

    Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort

    , Article Epidemiology ; Volume 21, Issue 6 , 2010 , Pages 892-902 ; 10443983 (ISSN) Delfino, R. J ; Staimer, N ; Tjoa, T ; Arhami, M ; Polidori, A ; Gillen, D. L ; George, S. C ; Shafer, M. M ; Schauer, J. J ; Sioutas, C ; Sharif University of Technology
    2010
    Abstract
    Background: Exposure-response information about particulate air-pollution constituents is needed to protect sensitive populations. Particulate matter <2.5 mm (PM 2.5) components may induce oxidative stress through reactive-oxygen-species generation, including primary organics from combustion sources and secondary organics from photochemically oxidized volatile organic compounds. We evaluated differences in airway versus systemic inflammatory responses to primary versus secondary organic particle components, particle size fractions, and the potential of particles to induce cellular production of reactive oxygen species. Methods: A total of 60 elderly subjects contributed up to 12 weekly... 

    The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

    , Article Iranian Journal of Pharmaceutical Research ; Volume 18, Issue 1 , 2019 , Pages 111-124 ; 17350328 (ISSN) Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Sharif University of Technology
    Iranian Journal of Pharmaceutical Research  2019
    Abstract
    In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astrocyte proliferation and microglial activation. Bovine serum albumin (BSA) was used to improve the encapsulation efficiency of DEXP within chitosan nanoparticles and to overcome its initial burst release. BSA incorporation within the chitosan nanoparticles increased the encapsulation efficiency of DEXP... 

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)... 

    Comparison of transplantation of bone marrow stromal cells (BMSC) and stem cell mobilization by granulocyte colony stimulating factor after traumatic brain injury in rat

    , Article Iranian Biomedical Journal ; Volume 14, Issue 4 , Oct , 2010 , Pages 142-149 ; 1028852X (ISSN) Bakhtiary, M ; Marzban, M ; Mehdizadeh, M ; Joghataei, M. T ; Khoei, S ; Pirhajati Mahabadi, V ; Laribi, B ; Tondar, M ; Moshkforoush, A ; Sharif University of Technology
    2010
    Abstract
    Background: Recent clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to compare effect of intravenous injection of bone marrow mesenchymal stem cells (BMSC) and bone marrow hematopoietic stem cell mobilization, induced by granulocyte colony stimulating factor (G-CSF), in rats with a cortical compact device. Methods: Forty adult male Wistar rats were injured with controlled cortical impact device and divided randomly into four groups. The treatment groups were injected with 2 × 106 intravenous bone marrow stromal stem cell (n = 10) and also with subcutaneous G-CSF (n = 10) and sham-operation group (n = 10) received PBS and "bromodeoxyuridine... 

    Producing functional recombinant human keratinocyte growth factor in Pichia pastoris and investigating its protective role against irradiation

    , Article Enzyme and Microbial Technology ; Volume 111 , April , 2018 , Pages 12-20 ; 01410229 (ISSN) Bahadori, Z ; Kalhor, H. R ; Mowla, S. J ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Keratinocyte Growth Factor (KGF) is a paracrine-acting, epithelial mitogen that plays a prominent role in the regeneration of damaged epithelial tissues. In spite of different attempts to produce recombinant human KGF in many organisms, including bacteria, mammalian cells, plant cells and insect cells; production of recombinant form suffers from lower yields and recovery relative to other recombinant proteins of similar size and properties. Due to many advantages of Pichia pastoris expression systems for producing industrial enzymes and pharmaceutical proteins, in this study P. pastoris was chosen as a host for KGF expression. For preparing human KGF coding sequence, MCF-7 cell line was... 

    Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing

    , Article International Journal of Biological Macromolecules ; Volume 134 , 2019 , Pages 280-289 ; 01418130 (ISSN) Azarniya, A ; Tamjid, E ; Eslahi, N ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    To enhance physicomechanical properties and bioactivity of fibrous membranes for wound dressing and tissue engineering applications, novel composite scaffolds consisting of fibrous mats and thermosensitive hydrogel particles were prepared by concurrent electrospinning and electrospraying technique. The composite scaffolds were composed of keratin/bacterial cellulose fibers (150 ± 43 nm) which are hybridized with hydrogel particles (500 nm to 2 μm) based on nonionic triblock copolymers conjugated with Tragacanth gum (TG). FTIR and H-NMR studies indicated ester reactions between carboxylated copolymers and TG through carbodiimide crosslinker chemistry. The hydrogel particles were uniformly... 

    A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer

    , Article Journal of Drug Delivery Science and Technology ; Volume 76 , 2022 ; 17732247 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Pourjavadi, A ; Kiani, M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    A tri-layered nanofibrous hydrogel thin film with temperature sensitivity is introduced as a new controlled drug release system to treat breast cancer. A simultaneous heat generation with the tunable release of dual drugs is observed in response to visible light radiation. A tri-layered nanofibrous sheet was fabricated through sequential electrospinning the blends of Au@Chit@DOX-loaded poly(N-isopropylacrylamide-co-N-methylol acrylamide) (poly (NIPAAm-co-NMA)) and Curcumin-loaded poly (vinyl alcohol) (Cu-loaded PVA), where the Cu-loaded PVA nanofibers (NFs) are sandwiched between two layers of Au@Chit@DOX-loaded poly (NIPAAm-co-NMA) NFs. After thermal crosslinking of the tri-layered... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Seasonal variations in the oxidative stress and inflammatory potential of PM2.5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources

    , Article Environment International ; Volume 123 , 2019 , Pages 417-427 ; 01604120 (ISSN) Al Hanai, A. H ; Antkiewicz, D. S ; Hemming, J. D. C ; Shafer, M. M ; Lai, A. M ; Arhami, M ; Hosseini, V ; Schauer, J. J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The current study was designed to assess the association between temporal variations in urban PM2.5 chemical composition, sources, and the oxidative stress and inflammatory response in an alveolar macrophage (AM) model. A year-long sampling campaign collected PM2.5 samples at the Sharif University in Tehran, Iran. PM-induced reactive oxygen species (ROS) production was measured both with an acellular dithiothreitol consumption assay (DTT-ROS; ranged from 2.1 to 9.3 nmoles min−1 m−3) and an in vitro macrophage-mediated ROS production assay (AM-ROS; ranged from 125 to 1213 μg Zymosan equivalents m−3). The production of tumor necrosis factor alpha (TNF-α; ranged from ~60 to 518 pg TNF-α m−3)... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to...