Loading...
Search for: anodes
0.005 seconds
Total 155 records

    In vitro bioactivity and corrosion resistance enhancement of Ti-6Al-4V by highly ordered TiO 2 nanotube arrays

    , Article Journal of the Australian Ceramic Society ; Volume 55, Issue 1 , 2019 , Pages 187-200 ; 25101560 (ISSN) Sarraf, M ; Sukiman, N. L ; Bushroa, A. R ; Nasiri Tabrizi, B ; Dabbagh, A ; Abu Kasim, N. H ; Basirun, W. J ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    In the present study, the structural features, corrosion behavior, and in vitro bioactivity of TiO 2 nanotubular arrays coated on Ti–6Al–4V (Ti64) alloy were investigated. For this reason, Ti64 plates were anodized in an ammonium fluoride electrolyte dissolved in a 90:10 ethylene glycol and water solvent mixture at room temperature under a constant potential of 60 V for 1 h. Subsequently, the anodized specimens were annealed in an argon gas furnace at 500 and 700 °C for 1.5 h with a heating and cooling rate of 5 °C min −1 . From XRD analysis and Raman spectroscopy, a highly crystalline anatase phase with tetragonal symmetry was formed from the thermally induced crystallization at 500 °C.... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) ; https://iopscience.iop.org/article/10.1088/2053-1591/ab6c98 Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Electrophoretic encapsulation for slow release of vancomycin from perpendicular TiO2 nanotubes grown on Ti6Al4V electrodes

    , Article Materials Research Express ; Volume 6, Issue 12 , 2019 ; 20531591 (ISSN) Riahi, Z ; Ahmadi Seyedkhani, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Ordered perpendicular TiO2 nanotubes (TNT) with 405 to 952 nm length and 60 to 90 nm diameter were grown via 40 to 120 min anodization of Ti6Al4V flat substrates. The samples were called TNT-40, -60, -80, -100, and -120. Vancomycin was loaded on the bare and anodized electrodes by separate immersion and electrophoretic (EP) deposition procedures. EP loading resulted in storage capacity of 5221.86 μg cm-2 for TNT-80 which was much higher than 1036.75 μg cm-2 of immersed sample. Drug release comprised of three stages: (i) burst release (78% for the bare, and 23% for the TNT-80 sample), (ii) gradual transport (21% for the bare, and 64% for the TNT-80 sample), and (iii) equilibrium. Transfer... 

    Bioinspired multifunctional TiO2 hierarchical micro/nanostructures with tunable improved bone cell growth and inhibited bacteria adhesion

    , Article Ceramics International ; Volume 46, Issue 7 , 2020 , Pages 9669-9679 Rahnamaee, S. Y ; Bagheri, R ; Vossoughi, M ; Ahmadi Seyedkhani, S ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Two main origins of failure for hard tissue replacements are structural loosening and prosthetic implant infections (PIIs). Bioinspired multifunctional TiO2 hierarchical micro/nanostructures of conical-shaped TiO2 (CTO), regular TiO2 nanotubes (RTO) and irregular TiO2 nanotubes (ITO) with tunable improved cell growth and inhibited bacteria adhesion were synthesized. CTO and ITO samples indicated superhydrophilicity with contact angles of less than 5°. The MTT assay demonstrated excellent biological performance for RTO and CTO sample with 98.1% and 103.1% of cell viability, respectively. The bridging force for osteoblast cell attachment onto the synthesized porous coatings was presented as a... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Antimony doped SnO2 nanowire@C core–shell structure as a high-performance anode material for lithium-ion battery

    , Article Nanotechnology ; Volume 32, Issue 28 , 2021 ; 09574484 (ISSN) Mousavi, M ; Abolhassani, R ; Hosseini, M ; Akbarnejad, E ; Mojallal, M. H ; Ghasemi, S ; Mohajerzadeh, S ; Sanaee, Z ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    SnO2 is considered as one of the high specific capacity anode materials for Lithium-ion batteries. However, the low electrical conductivity of SnO2 limits its applications. This manuscript reports a simple and efficient approach for the synthesis of Sb-doped SnO2 nanowires (NWs) core and carbon shell structure which effectively enhances the electrical conductivity and electrochemical performance of SnO2 nanostructures. Sb doping was performed during the vapor-liquid-solid synthesis of SnO2 NWs in a horizontal furnace. Subsequently, carbon nanolayer was coated on the NWs using the DC Plasma Enhanced Chemical Vapor Deposition approach. The carbon-coated shell improves the Solid-Electrolyte... 

    Effect of a synthesized pulsed electrodeposited Tin/pbo2-ruo2nanocomposite on zinc electrowinning

    , Article Industrial and Engineering Chemistry Research ; Volume 60, Issue 31 , 2021 , Pages 11737-11748 ; 08885885 (ISSN) Hakimi, F ; Rashchi, F ; Ghalekhani, M ; Dolati, A ; Razi Astaraei, F ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, there is a growing interest in synthesizing electrodes used in zinc electrowinning, increasing active surface area, decreasing specific energy consumption, and the oxygen evolution reaction (OER) overpotential. In this study, modified nanocomposite anodes were synthesized by applying pulsed and constant direct current electrodeposition to improve the catalytic activity of the electrodes toward the oxygen evolution reaction (OER) and reduce energy consumption in zinc electrowinning. By decreasing particle size, the active surface area of PbO2-RuO2 nano-mixed composite electrode was 2.88 and 14.22 times greater than PbO2-RuO2 microcomposite and pure PbO2 electrodes, respectively.... 

    Surface Modification of Metallic Implants and Improvement of their Biological Properties in Presence of Bioactive Ceramic Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Riahi, Zohreh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    By consideration of increasing demands to use implants and efforts to get technical knowledge and localization of this implants, considerable research in this field is needed. Therefore, presentation of a coating which is able to provide parameters needed for an acceptable implant is the aim of this study. In this direction, modification of surface of metallic implants in order to achieve nanotubes of titanium oxide, with the purpose of providing biocompatibility was done. On the other hand, because chronic infection of the implant’s surrounding is one of the main important reasons in rejection of implants, 〖TiO〗_2 nanotubes as a drug carrier were used in order to solve this problem. So,... 

    Electrophoretic Deposition of Functionally Graded NiO/YSZ for SOFC Anode Fabrication

    , M.Sc. Thesis Sharif University of Technology Zarabian, Mina (Author) ; Faghihi Sani, Mohammad Ali (Supervisor) ; Simchi, Abdolreza (Supervisor)
    Abstract
    The future crisis and environmental pollution led to increasing interest in alternative energy conversion systems such as solid oxide fuel cell (SOFC). One of the main obstacles in using SOFCs is their relatively high fabrication cost compared with their low amount of produced energy .Therefore, in the present study, fabrication of a more cost-efficient functionally graded NiO-YSZ composite for SOFC anode by electrophoretic deposition (EPD) method was investigated. In this research, the effect of different chemical parameters such as media, additives, particle size distribution and nano NiO addition were initially investigated on the stability of NiO-YSZ suspension by Zetasizer and turbidity... 

    Electrochemical Behaviors of RuO2-TiO2 Mixed Metal Oxide Coated on Titanium Anodes in Chlor-Alkali Electrolysis

    , M.Sc. Thesis Sharif University of Technology Paryani, Kasra (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Titanium anodes activated by noble metal oxides under the trade name of dimensionally stable anodes (DSAs) are widely used in the electrolytic industry, particularly in chlor – alkali electrolysis. Over 20 years of use, the fundamental aspects of their long – lasting performance are not fully understand and the corrosion mechanisms are still the subject of many investigations. RuO2 – TiO2 coatings on titanium substrate, due to proper electrochemical characteristics and good corrosion resistance, is most applicable as an anode in chlor – alkali systems. In the present investigation, the first layer of Pt – Ir coating is applied via electrodeposition method on the pretreated titanium substrate... 

    Increasing Critical Heat Flux and Boiling Heat Transfer on Superhydrophilic Nano Porous Surface Using Low Conductive Spots

    , M.Sc. Thesis Sharif University of Technology Najafpour, Sahand (Author) ; Mousavi, Ali (Supervisor)
    Abstract
    This dissertation argues that bi-conductive textured surfaces increase both Critical Heat Flux (CHF) and Heat Transfer Coefficient (HTC) simultaneously. Surface modification is applied to stainless steel specimens by the anodizing method in an electrolyte containing Ammonium Fluoride and DI-Water and Ethylene Glycol as the based solvent. The process of oxidation was under constant DC voltage and constant temperature. The contact angle on self-aligned Nano-porous oxide layer fabricated on the substrate substantially decreases to about 5.7 degree which has a dramatic effect on CHF. Furthermore, the oxide layer augments the boiling efficiency by increasing the number of active sites and... 

    The Impedimetric Human Papiloma Virous DNA Biosensor Fabrication Based on Gold Nanotubes

    , Ph.D. Dissertation Sharif University of Technology Shariati, Mohsen (Author) ; Ghorbani, Mohammad (Supervisor) ; Sasanpour, Pezhman (Supervisor)
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Kineticts of formation of Titania Nanotubes and Silk Fibroin on Titanium-based Metal for Investigating the Drug Release Behavior

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Arghavan (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    In recent decades, due to the significant growth of implants’ application and considering the infection of the implants as the most momentous factor in implantation failure, study on the controlled drug release and other biologically active agents in modern drug delivery systems has attracted many kinds of research throughout the world and efforts are being made to use regulated drug delivery systems for implantation which is also the purpose of this current scientific work.To achieve this, the anodizing process was used to fabricate titanium oxide nanotubes (TNTs) to increase the absorption capacity of the drug in the implants and these TNTs were formed regularly and uniformly in an organic... 

    Experimental Study of Hydrogen Production from Dairy Wastewater in the Annular Microbial Electrolysis Cell (AMEC)with Spiral Anode

    , M.Sc. Thesis Sharif University of Technology Hassany, Masoud (Author) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    In this project, energy in form of electricity and hydrogen was produced in microbial fuel cell and microbial electrolysis cell respectively. For reducing costs, a stainless steel mesh with graphite coating was used as anode electode. Also for increasing efficiency, anode was positioned in cells in a spiral mode. Efficiency of cells was investigated in batch and continuous mode. In this research, dairy wastewater was used as substrate.This wastewater not only has severe emissions, but also is high energy content. In the field of dairy wastewater treatment and hydrogen production in an microbial electrolysis cell wasn’t observed any article.At the first, wastewater was treated in two... 

    Investigation of Si3n4 Nano Particle Addition on the Hardening Behavior of Anodized Coated 1050 Aluminum Alloy

    , M.Sc. Thesis Sharif University of Technology Mohammadi Dehcheshmeh, Iman (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    In the present study, it has been tried out to increase the hardness and wear resistance of anodized aluminum coating byadding Si3N4 nanoparticles to the anodizing bath and making a composite coating. In order to investigate the influence of other effective parameters on the properties of anodized coating before the compositing process, hardness and thickness were optimized in the Sulphoric/oxalic bath using design of experimental method (central composite design). The properties of these coatings are dependent on various parameters among which time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were considered in the present study. Analysis of... 

    Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Organic Electrolytes

    , M.Sc. Thesis Sharif University of Technology Hamedi, Mojtaba (Author) ; Askari, Masoud (Supervisor) ; Hakim, Manochehr (Supervisor)
    Abstract
    Titanium dioxide, due to its specific semiconductive properties, has been a highly investigated material for a variety of applications including gas sensors, hydrogen generation by water photoelectrolysis, photocatalysis, dye-sensitized solar cells and purification of water and air. Several recent studies have indicated that titania nanotubes have improved properties compared to any other form of titania for mentioned application. Titania nanotubes have been produced by a variety of methods including deposition into a template and hydrothermal processes. Anodic oxidation of titanium foil in a fluoride-based solution is one of the best methods to produce of titania nanotube arrays. Highly... 

    Analysis of Ratcheting in Elastic-plastic Behavior of Li-ion Battery Electrodes

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mohammad Ali (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Among the various materials, silicon anodes have the highest lithium absorption in lithium-ion batteries. But this high lithium absorption capacity can cause 300 percent volume expansion and large stresses. Experimental observations show that charge and discharge cycles may cause plastic deformation in some parts of the electrode particle. On the other hand, there is a possibility of a ratcheting phenomenon due to changing in elastic properties of the electrode material during the charging and discharging processes. However, this phenomenon has not been reported for silicon spherical electrode particles yet.This study aims to model the elastic-plastic behavior of silicon spherical electrode... 

    Repeatability of Lithium Adsorption and Desorption on TiO2 Nanotubes from Brines

    , M.Sc. Thesis Sharif University of Technology Safarzadeh, Amin (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Today, recycling lithium as a valuable metal from brine plays an important role in various applications such as battery manufacturing, computers, aerospace and automobiles. Among the aqueous methods available for the extraction of the lithium element in brines, ion exchange by TiO2 nanosorbents is one of the most efficient methods. In this study, first the titanium dioxide nanotubes were well synthesized by anodizing method and the nanograss created after the anodizing process were completely eliminated. Then, the effect of three cathodes of aluminum, graphite and stainless steel in order to select the best cathode and achieve a regular morphology as well as their replacement with platinum... 

    Synthesis of Graphene and its Application for Adsorption of Cobalt and Strontium Ions, and as an Electrode in Electrochemical Cells (Battery)

    , M.Sc. Thesis Sharif University of Technology Jalilzadeh, Hassan (Author) ; Outokesh, Mohammad (Supervisor) ; Hosseinpour, Morteza (Co-Supervisor)
    Abstract
    Although much progress has been made in eliminating, conserving, and reducing migration and emissions of radioactive materials, the risk of radioactive material release into the environment is still one of the most important hazards in the use of nuclear energy. In this study, graphene compounds have been used as adsorbents for the removal of radioactive materials due to their high level, cost-effectiveness and simplicity of the synthesis process of various composites. In this regard, the removal of strontium and cobalt by graphene compounds has been investigated. Magnetite nanoparticles were anchored on the surface of graphene by sol-gel method and adsorption in batch mode was investigated.... 

    Fabrication and Photoelectrochemical Characterization of Ordered Nanotube Arrays of TiO2 for Solar Cell Application

    , Ph.D. Dissertation Sharif University of Technology Mohammadpour, Raheleh (Author) ; Iraji zad, Aazam (Supervisor) ; Dolati, Abolghasem (Supervisor) ; Taghavinia, Neima (Co-Advisor)
    Abstract
    In this research we focus on study and fabrication of ordered nanotube arrays of titanium oxide and their applications in photoelectrochemical cell. Nanotubular films of titanium oxide have been fabricated using anodization method. Short-length nanotubes, less than one micrometer, have been synthesized in aqueous electrolyte containing deionized water, hydrofluoric acid and phosphoric acid. To get Micron-length nanotubes, we have employed organic electrolyte containing ethylene glycol, deionized water and fluoride ammonium. After fabrication, the photo-catalytic activity of nanotubular structures was evaluated by measuring the rate of degradation of in methylene blue aqueous solution. The...