Loading...
Search for: applications
0.009 seconds
Total 1377 records

    Development and biomedical application of nanocomposites: In situ fabrication of ZnO-PbO nanocomposite through microwave method

    , Article Materials Technology ; Vol. 29, issue. 4 , July , 2014 , p. 227-231 Rajabi, A ; Aieneravaie, M ; Dorosti, V ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    A novel nanocomposite of ZnO-PbO with flower-like nanostructure was fabricated from zinc acetate and lead nitrate as principle raw materials via an in situ process. The novelty of this study consists in the use of a common approach for fabricating of ZnO and PbO nanoparticles simultaneously. From these experiments the conclusion might be drawn that Zn(NH4) 2 4+ ions and Pb(OH)2 act as precursors for the nucleation and growth of ZnO and PbO respectively under microwave irradiation. The precursors formation were carried at two stages: reaction between zinc ions and lead nitrate with ammonium ion and hydroxide sodium respectively. The average crystalline size of Zno and PbO has been analysed by... 

    Throughput-memory footprint trade-off in synthesis of streaming software on embedded multiprocessors

    , Article Transactions on Embedded Computing Systems ; Volume 13, Issue 3 , December , 2013 ; 15399087 (ISSN) Hashemi, M ; Foroozannejad, M. H ; Ghiasi, S ; Sharif University of Technology
    2013
    Abstract
    We study the trade-off between throughput and memory footprint of embedded software that is synthesized from acyclic static dataflow (task graph) specifications targeting distributed memory multiprocessors. We identify iteration overlapping as a knob in the synthesis process by which one can trade application throughput for its memory requirement. Given an initial processor assignment and non-overlapped task schedule, we formally present underlying properties of the problem, such as constraints on a valid iteration overlapping, maximum possible throughput, and minimum memory footprint. Moreover, we develop an effective algorithm for generation of a rich set of design points that provide a... 

    Pressureless sintering of Ta0.8Hf0.2C UHTC in the presence of MoSi2

    , Article Ceramics International ; Volume 39, Issue 2 , 2013 , Pages 1985-1989 ; 02728842 (ISSN) Ghaffari, S. A ; Faghihi Sani, M. A ; Golestani Fard, F ; Ebrahimi, S ; Sharif University of Technology
    2013
    Abstract
    Ta0.8Hf0.2C ceramic has the highest melting point among the known materials (4000 °C). However, this high melting point makes the ceramic difficult to be sintered at temperatures lower than 2300 °C, pressurelessly. The purpose of this study is to consolidate Ta 0.8Hf0.2C UHTC by pressureless sintering at 2000 °C using MoSi2 as sintering aid. In this regard, effect of different amounts of MoSi2 on sintering behavior of Ta0.8Hf 0.2 UHTC was investigated. It was observed that condensation of the UHTC after sintering at 2000 °C was enhanced by increasing MoSi2 content and the highest relative density of 95% was obtained in the presence of 24 vol.% MoSi2. XRD pattern of the sintered UHTC... 

    Immobilization of α -chymotrypsin on the surface of magnetic/gold core/shell nanoparticles

    , Article Journal of Nanotechnology ; Volume 2013 , 2013 ; 16879503 (ISSN) Kamal Ahmadi, M ; Vossoughi, M ; Sharif University of Technology
    Hindawi Publishing Corporation  2013
    Abstract
    Over the last decade, nanoparticles used as protein carriers have opened new avenues for a variety of biomedical applications. The main concern for these applications is changes in biological activity of immobilized proteins due to conformational changes on the surface of the carrier. To evaluate this concern, the preparation and biocatalyst activity of α-chymotrypsin-Fe 3O4 @ Au core/shell nanoparticles were investigated. First, Fe3O4 @ Au core/shell nanoparticles were synthesized by coprecipitation method and citrate reduction of HAuCl 4. TEM imaging revealed a core size of 13 ± 3 nm and a shell thickness of 4 ± 1 nm for synthesized nanoparticles. X-ray diffraction (XRD) was used to study... 

    Genetic application in a facility location problem with random demand within queuing framework

    , Article Journal of Intelligent Manufacturing ; Volume 23, Issue 3 , 2012 , Pages 651-659 ; 09565515 (ISSN) Pasandideh, S. H. R ; Niaki, S. T. A ; Sharif University of Technology
    2012
    Abstract
    In many service and industrial applications of the facility location problem, the number of required facilities along with allocation of the customers to the facilities are the two major questions that need to be answered. In this paper, a facility location problem with stochastic customer demand and immobile servers is studied. Two objectives considered in this problem are: (1) minimizing the average customer waiting time and (2) minimizing the average facility idletime percentage. We formulate this problem using queuing theory and solve the model by a genetic algorithm within the desirability function framework. Several examples are presented to demonstrate the applications of the proposed... 

    Low phase noise on-chip oscillator for implantable biomedical applications

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2011 , Pages 213-216 ; 02714310 (ISSN) ; 9781424494736 (ISBN) Aghlmand, F ; Atarodi, M ; Saeedi, S ; Sharif University of Technology
    Abstract
    On-chip accurate clock references are one of the essential building blocks in fully integrated Systems-On-Chips (SOC). In this paper, a low phase noise, temperature and supply voltage independent clock reference is presented. It provides the reference frequency for a biomedical implantable system. The simulated phase noise at 100 KHz offset from 2MHz carrier is 113dBc/Hz. Simulations show the frequency remains within 0.34% of the nominal oscillation frequency in the operating voltage range of 1.7 - 1.9 V without any calibration and its change in the temperature range of 20-to100C is 0.5%. The circuit consumes 77W and is designed in a 0.18m technology with 1.8V supply voltage  

    Systolic gaussian normal basis multiplier architectures suitable for high-performance applications

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 23, Issue 9 , 2015 , Pages 1969-1972 ; 10638210 (ISSN) Azarderakhsh, R ; Kermani, M. M ; Bayat Sarmadi, S ; Lee, C. Y ; Sharif University of Technology
    Abstract
    Normal basis multiplication in finite fields is vastly utilized in different applications, including error control coding and the like due to its advantageous characteristics and the fact that squaring of elements can be obtained without hardware complexity. In this brief, we present decomposition algorithms to develop novel systolic structures for digit-level Gaussian normal basis multiplication over GF (2m). The proposed architectures are suitable for high-performance applications, which require fast computations in finite fields with high throughputs. We also present the results of our application-specific integrated circuit synthesis using a 65-nm standard-cell library to benchmark the... 

    Analytical solution for axisymmetric buckling of joined conical shells under axial compression

    , Article Structural Engineering and Mechanics ; Volume 54, Issue 4 , 2015 , Pages 649-664 ; 12254568 (ISSN) Kouchakzadeh, M. A ; Shakouri, M ; Sharif University of Technology
    Techno Press  2015
    Abstract
    In this study, the authors present an analytical approach to find the axisymmetric buckling load of two joined isotropic conical shells under axial compression. The problem of two joined conical shells may be considered as the generalized form of joined cylindrical and conical shells with constant or stepped thicknesses. Thickness of each cone is constant; however it may be different from the thickness of the other cone. The boundary conditions are assumed to be simply supported with rigid rings. The governing equations for the conical shells are obtained and solved with an analytical approach. A simple closed-form expression is obtained for the buckling load of two joined truncated conical... 

    Formless: scalable utilization of embedded manycores in streaming applications

    , Article Proceedings of the ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES) ; 2012 , Pages 71-78 ; 9781450312127 (ISBN) Hashemi, M ; Foroozannejad, M. H ; Ghiasi, S ; Etzel, C ; Sharif University of Technology
    Abstract
    Variants of dataflow specification models are widely used to synthesize streaming applications for distributed-memory parallel processors. We argue that current practice of specifying streaming applications using rigid dataflow models, implicitly prohibits a number of platform oriented optimizations and hence limits portability and scalability with respect to number of processors. We motivate Functionally-cOnsistent stRucturally-MalLEabe Streaming Specification, dubbed FORMLESS, which refers to raising the abstraction level beyond fixed-structure dataflow to address its portability and scalability limitations. To demonstrate the potential of the idea, we develop a design space exploration... 

    A novel approach for recovering 2-valued independent sparse components from whitened data in noisy environments

    , Article Proceedings - 2016 UKSim-AMSS 18th International Conference on Computer Modelling and Simulation, UKSim 2016, 6 April 2016 through 8 April 2016 ; 2016 , Pages 155-160 ; 9781509008889 (ISBN) Keshavarzi, M ; Bayat, S ; Keshavarzi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Some sources transmit periodic and quasi periodic sparse pulse trains in the environment and a number of sensors might receive them through a single channel simultaneously. It is usually our interest to know which pulse belongs to which source. This identification process has wide applications in communications, radar system, medical applications, and neural systems. Blind source separation (BSS) is one solution for this problem. This paper proposed a geometrical approach to solve BSS problem when observations are whitened data and are obtained from the linear mixtures of 2-valued sparse signals (such as sparse pulse trains). In other words, the proposed approach aims to estimate a rotation... 

    A robust FCM algorithm for image segmentation based on spatial information and total variation

    , Article 9th Iranian Conference on Machine Vision and Image Processing, 18 November 2015 through 19 November 2015 ; Volume 2016-February , 2015 , Pages 180-184 ; 21666776 (ISSN) ; 9781467385398 (ISBN) Akbari, H ; Mohebbi Kalkhoran, H. M ; Fatemizadeh, E ; Sharif University of Technology
    IEEE Computer Society 
    Abstract
    Image segmentation with clustering approach is widely used in biomedical application. Fuzzy c-means (FCM) clustering is able to preserve the information between tissues in image, but not taking spatial information into account, makes segmentation results of the standard FCM sensitive to noise. To overcome the above shortcoming, a modified FCM algorithm for MRI brain image segmentation is presented in this paper. The algorithm is realized by incorporating the spatial neighborhood information into the standard FCM algorithm and modifying the membership weighting of each cluster by smoothing it by Total Variation (TV) denoising. The proposed algorithm is evaluated with accuracy index in... 

    Dual improvement of DNA-directed antibody immobilization utilizing magnetic fishing and a polyamine coated surface

    , Article RSC Advances ; Volume 6, Issue 112 , 2016 , Pages 111210-111216 ; 20462069 (ISSN) Esmaeili, E ; Soleimani, M ; Shamloo, A ; Mahmoudifard, M ; Vossoughi, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    The present study is aimed at the development of a novel approach based on the magnetic improvement of DNA-directed antibody immobilization to prepare a highly efficient sensing platform. Magnetic nanoparticle substrates with high surface area capture the dual DNA-conjugated antibodies in a solution. This allows overcoming the typical mass transport limitation of the surface-based antibody immobilization. Antibody-magnetic nanoparticle conjugation is based on a robust hybridization between a DNA tether (attached to the antibody) and its complementary sequence (immobilized on the nanoparticle). Conventional antibody immobilization for the detection of proteins is often insignificant for the... 

    Microfluidic-based multi-organ platforms for drug discovery

    , Article Micromachines ; Volume 7, Issue 9 , 2016 ; 2072666X (ISSN) Rezaei Kolahchi, A ; Khadem Mohtaram, N ; Pezeshgi Modarres, H ; Mohammadi, M. H ; Geraili, A ; Jafari, P ; Akbari, M ; Sanati Nezhad, A ; Sharif University of Technology
    MDPI AG 
    Abstract
    Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing... 

    Lidar system architectures and circuits

    , Article IEEE Communications Magazine ; Volume 55, Issue 10 , 2017 , Pages 135-142 ; 01636804 (ISSN) Behroozpour, B ; Sandborn, P. A. M ; Wu, M. C ; Boser, B. E ; Sharif University of Technology
    Abstract
    3D imaging technologies are applied in numerous areas, including self-driving cars, drones, and robots, and in advanced industrial, medical, scientific, and consumer applications. 3D imaging is usually accomplished by finding the distance to multiple points on an object or in a scene, and then creating a point cloud of those range measurements. Different methods can be used for the ranging. Some of these methods, such as stereovision, rely on processing 2D images. Other techniques estimate the distance more directly by measuring the round-trip delay of an ultrasonic or electromagnetic wave to the object. Ultrasonic waves suffer large losses in air and cannot reach distances beyond a few... 

    Dynamic analysis of magnetic nanoparticles crossing cell membrane

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 372-378 ; 03048853 (ISSN) Pedram, M. Z ; Shamloo, A ; Ghafar Zadeh, E ; Alasty, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of... 

    Voltage control of three phase inverters by using active disturbance rejection control

    , Article 30th Power System Conference, PSC 2015, 23 November 2015 through 25 November 2015 ; 2017 , Pages 169-176 ; 9781509027057 (ISBN) Mehrabankhomartash, M ; Toulabi, M. R ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Control of three phase inverters is of paramount importance in the realm of control applications. In this regard, this paper proposes active disturbance rejection control (ADRC) scheme as a new method for voltage control of three phase inverters in UPS applications. The main advantage of ADRC refers to the fact that it is model independent. In this paper, the controller is composed of a double loop structure including an inner current loop and outer voltage loop. This structure is used in a three phase inverter in order for implementation of voltage control. To draw a comparison between ADRC and PI as the common control method, a case study has been simulated in SIMULINK. Simulation results... 

    Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach

    , Article Sensors (Switzerland) ; Volume 17, Issue 1 , 2017 ; 14248220 (ISSN) Mokhlespour Esfahani, M. I ; Zobeiri, O ; Moshiri, B ; Narimani, R ; Mehravar, M ; Rashedi, E ; Parnianpour, M ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body‐Worn Sensors (BWS) is designed and developed. TMS can measure three‐dimensional (3D) trunk motions, is lightweight, and is a portable and non‐invasive system. After the recognition of sensor locations, twelve BWSs were printed on stretchable clothing with the purpose of measuring the 3D trunk movements. To integrate BWSs data, a neural network data... 

    Proposing a new feature for structure-aware analysis of android malwares

    , Article 2017 14th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology, ISCISC 2017, 6 September 2017 through 7 September 2017 ; 2018 , Pages 111-118 ; 9781538665602 (ISBN) Pooryousef, S ; Fouladi, K ; Sharif University of Technology
    Abstract
    Android is a major target of attackers for malicious purposes due to its popularity. Despite obvious malicious functionality of Android malware, its analysis is a challenging task. Extracting and using features that discriminate malicious and benign behaviors in applications is essential for malware classification in using machine learning methods. In this paper, we propose a new feature in Android malware classification process which in combination with other proposed features, can discriminate malicious and benign behaviors with a good accuracy. Using components such as activities and services in Android applications' source code will lead to different flows on invoking between... 

    Graphene-mediated self-assembly of gold nanorods into long fibers with controllable optical properties

    , Article Materials Letters ; Volume 224 , 2018 , Pages 13-17 ; 0167577X (ISSN) Bagheri, P ; Farivar, M ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The paper presents graphene-templated self-assembly of gold nanorods into long fibers with controllable optical properties. It is shown that the size of self-assembled nanostructures varies with time and is controlled by chemical reactions between amine groups of graphene and the functional groups of gold. The absorption peak of the nanostructures changes over time while the photoluminescence intensity is quenched. The self-assembled nanostructures with variable plasmon resonance effects are potentially usable for the fabrication of nanoscale devices for biomedical applications. © 2018 Elsevier B.V  

    Detecting malicious applications using system services request behavior

    , Article 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous 2019, 12 November 2019 through 14 November 2019 ; 2019 , Pages 200-209 ; 9781450372831 (ISBN) Salehi, M ; Amini, M ; Crispo, B ; Sharif University of Technology
    Association for Computing Machinery  2019
    Abstract
    Widespread growth in Android malware stimulates security researchers to propose different methods for analyzing and detecting malicious behaviors in applications. Nevertheless, current solutions are ill-suited to extract the fine-grained behavior of Android applications accurately and efficiently. In this paper, we propose ServiceMonitor, a lightweight host-based detection system that dynamically detects malicious applications directly on mobile devices. ServiceMonitor reconstructs the fine-grained behavior of applications based on their interaction with system services (i.e. SMS manager, camera, wifi networking, etc). ServiceMonitor monitors the way applications request system services in...