Loading...
Search for: aspect-ratio
0.01 seconds
Total 217 records

    Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels

    , Article International Journal of Multiphase Flow ; Volume 111 , 2019 , Pages 315-338 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Ghorbanhoseini, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    An experimental investigation of primary breakup dynamics and spray characteristics of a rotary atomizer with high aspect ratio radial-axial discharge channel is described. A high-resolution shadow imaging technique with pulsed backlight illumination was used for spray visualization. For the rotary atomizer with high aspect ratio discharge channel and radial-axial orientation, visualization showed the occurrence of Centripetal–Coriolis-induced stream-mode injection for all operating conditions. In this mode of injection, a crescent liquid film forms in the channel exit and issues from the orifice as a liquid column or a thin liquid sheet depending on atomizer operating conditions. It was... 

    Analysis of effective parameters on ablative PPT performance

    , Article Aircraft Engineering and Aerospace Technology ; Volume 84, Issue 4 , 2012 , Pages 231-243 ; 00022667 (ISSN) Rezaeiha, A ; Schönherr, T ; Sharif University of Technology
    2012
    Abstract
    Purpose - The purpose of this paper is to comprehensively review most of the significant works ever done worldwide to study the effects of essential parameters on pulsed plasma thruster (PPT) performance and to analyze the effects of each parameter on PPT performance. Design/methodology/approach - All the important works studying PPT performance are categorized by the parameter they have studied and its effect on the thruster performance, and their works have been reviewed to analyze the influence of each parameter. Findings - The analysis leads to elucidation of the effects of different geometrical parameters including aspect ratio, electrode width, electrode spacing, electrode shape,... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; 2017 , Pages 1-21 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; Volume 32, Issue 1 , 2018 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 29, Issue 9 , 2019 , Pages 3075-3094 ; 09615539 (ISSN) Pu, Q ; Aalizadeh, F ; Aghamolaei, D ; Masoumnezhad, M ; Rahimi, A ; Kasaeipoor, A ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method. Design/methodology/approach: The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is... 

    Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 47 , 2017 ; 00223727 (ISSN) Pourreza, M ; Naseri, N ; Sharif University of Technology
    Abstract
    Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown... 

    Thermal-exergetic behavior of triangular vortex generators through the cylindrical tubes

    , Article International Journal of Heat and Mass Transfer ; Volume 151 , 2020 Pourhedayat, S ; Pesteei, S. M ; Ebrahimi Ghalinghie, H ; Hashemian, M ; Aqeel Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, new arrangements of triangular winglet as a turbulator are numerically studied through a cylindrical tube. Triangular winglets are commonly placed on one side of a rectangular plate and inserted inside the tube. However, in present work, the winglets are located on both sides of the rectangular plate to further enhance the thermal performance of the fluid flow through the tube. Both backward and forward configurations of the winglets are analysed. Moreover, despite the importance of “latitudinal pitch of the winglets” and “winglet-plate angle” no investigation has been evaluated these parameters which will be evaluated in this work. Moreover, as no exergetic evaluation has... 

    Non-linear vibration analysis of laminated composite plates resting on non-linear elastic foundations

    , Article Journal of the Franklin Institute ; Volume 348, Issue 2 , March , 2011 , Pages 353-368 ; 00160032 (ISSN) Pirbodaghi, T ; Fesanghary, M ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    In this study, the homotopy analysis method (HAM) is used to obtain an approximate analytical solution for geometrically non-linear vibrations of thin laminated composite plates resting on non-linear elastic foundations. Geometric non-linearity is considered using von Karman's straindisplacement relations. Then, the effects of the initial deflection, ply properties, aspect ratio of the plate and foundation parameters on the non-linear free vibration is studied. Comparison between the obtained results and those available in the literature demonstrates the potential of HAM for the analysis of such vibration problems, whose governing differential equations include the quadratic and cubic... 

    Experimental investigation of the bubble motion and its ascension in a quiescent viscous liquid

    , Article Experimental Thermal and Fluid Science ; Volume 103 , 2019 , Pages 274-285 ; 08941777 (ISSN) Oshaghi, M. R ; Shahsavari, M ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In the present research, the rising behavior of air bubble in a viscous liquid is investigated experimentally. Aqueous solutions of glycerol and CMC were used as the Newtonian and shear-thinning non-Newtonian viscous liquids, respectively. The bubble is formed via injection of air by a syringe pump and rises in the quiescent viscous liquid. The process was captured using a high-speed camera (1000 fps) and was post processed to obtain the bubble characteristics such as the center of mass and aspect ratio. The experimental results were verified using the existing literatures and the non-dimensional numbers were reduced to two (Velocity number and Flow number) by lumping the parameters. In... 

    Providing Multicolor Plasmonic Patterns with Au@Ag Core-Shell Nanostructures for Visual Discrimination of Biogenic Amines

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 17 , 2021 , Pages 20865-20874 ; 19448244 (ISSN) Orouji, A ; Ghasemi, F ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Biogenic amines (BAs) are known as substantial indicators of the quality and safety of food. Developing rapid and visual detection methods capable of simultaneously monitoring BAs is highly desired due to their harmful effects on human health. In the present study, we have designed a multicolor sensor array consisting of two types of gold nanostructures (i.e., gold nanorods (AuNRs) and gold nanospheres (AuNSs)) for the discrimination and determination of critical BAs (i.e., spermine (SM), tryptamine (TT), ethylenediamine (EA), tyramine (TR), spermidine (SD), and histamine (HT)). The design principle of the probe was based on the metallization of silver ions on the surface of AuNRs and AuNSs... 

    Simulation and control of multidimensional crystallization Processes

    , Article Chemical Engineering Communications ; Vol. 201, Issue. 7 , 2014 , pp. 870-895 ; ISSN: 0098-6445 Orkomi, A. A ; Shahrokhi, M ; Sharif University of Technology
    Abstract
    In this article, solving the population balance equation (PBE) and controlling the final particle size for crystallization problems have been addressed. For solving the general form of multidimensional PBE, a numerical method called conservation element and solution element (CE/SE) has been used. By applying this method to one- and two-dimensional crystallization problems, it has been shown that this technique can handle all types of source terms in the PBE. Model accuracy has been checked with experimental data reported in the literature and also with the analytical solution of PB-type equations. Control of final particle size was formulated in an optimization framework. To obtain a desired... 

    Optimization of the heat transfer coefficient and pressure drop of Taylor-Couette-Poiseuille flows between an inner rotating cylinder and an outer grooved stationary cylinder

    , Article International Journal of Heat and Mass Transfer ; Volume 108 , 2017 , Pages 1449-1459 ; 00179310 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The aim of this study is to find optimum values of design parameters of annular flow with outer grooved cylinder and rotating inner cylinder in the presence of axial flow by using Response surface Method (RSM). This configuration is popular in cooling of electric generators and rotating machineries. Groove aspect ratio (0

    Heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder: review and experiments

    , Article Applied Thermal Engineering ; Volume 120 , 2017 , Pages 257-268 ; 13594311 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Abstract
    This experimental work is an attempt to identify the most significant parameters influencing heat transfer enhancement in annular flow with outer grooved cylinder and rotating inner cylinder. This type of flow known as Taylor-Couette flow has many industrial applications such as electrical power generators and rotating machineries. A comprehensive review of the previous works on flow regimes, heat transfer and pressure drop in grooved channels is provided. The experiments are conducted based on four different factors including Taylor number, 0

    Experimental study of convective heat transfer in the entrance region of an annulus with an external grooved surface

    , Article Experimental Thermal and Fluid Science ; Volume 98 , 2018 , Pages 557-562 ; 08941777 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    The aim of this experimental work is to study the effect of grooved surfaces in the entrance region of annular flows on local heat transfer. The outer stationary cylinder is grooved and the inner rotating cylinder is smooth. This configuration is applicable in industrial applications such as rotating heat pipes for cooling of superconducting machines or motors rotor, electrical generators where heat generates in the grooves containing wires, transient heating of axial compressor rotor drams, combustion chamber in turbojets, air-cooled axial-flux permanent-magnet machines. The experimental tests were performed based on aspect ratio of the groove, effective Reynolds number and Taylor number.... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2018 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Prediction of local shear stress and heat transfer between internal rotating cylinder and longitudinal cavities on stationary cylinder with various shapes

    , Article International Journal of Thermal Sciences ; Volume 138 , 2019 , Pages 512-520 ; 12900729 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Elsevier Masson SAS  2019
    Abstract
    A numerical analysis has been performed to simulate flow structure, heat transfer, and pressure drop of turbulent flow in an annulus with a few longitudinal cavities on the outer stationary cylinder. The cross sections of cavities are rectangular, closed and open trapezoidal shapes. This kind of annular flow is applicable to industries applications such as electrical generators where heat generates in the cavities containing wires, heating of axial compressor rotor drams, rotating heat pipes for cooling of superconducting machines or motor rotor. The governing equations of turbulent flow are solved by using Renormalization group (RNG) k–ε model for Reynolds and Taylor numbers in the range of... 

    Friction factor and nusselt number in annular flows with smooth and slotted surface

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 55, Issue 3 , 2019 , Pages 645-653 ; 09477411 (ISSN) Nouri Borujerdi, A ; Erfanian Nakhchi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The purpose of this experimental work is to study the effect of slot depth to width ratio, rotational motion and inlet velocity on friction factor and Nusselt number in an annular flow between two concentric cylinders with smooth and slotted surface. The heated outer surface is stationary and the unheated inner one is rotating. This configuration is popular in industrial applications such as internal air system of gas turbine engines, cooling of rotating machinery, techniques of chemical vapor deposition and solidification of pure metals. The results show that the ratio of average slotted surface friction factor to that of the smooth one enhances by increasing the slot depth to width ratio... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,...