Loading...
Search for: aspect-ratio
0.014 seconds
Total 217 records

    The influence of grain size and grain size distribution on sliding frictional contact in laterally graded materials

    , Article Mechatronics and Applied Mechanics, Hong Kong, 27 December 2011 through 28 December 2011 ; Volume 157-158 , 2012 , Pages 964-969 ; 16609336 (ISSN); 9783037853801 (ISBN) Khajehtourian, R ; Adibnazari, S ; Tashi, S ; 2011 International Conference; on Mechatronics and Applied Mechanics, ICMAM2011 ; Sharif University of Technology
    2012
    Abstract
    The sliding frictional contact problem for a laterally graded half-plane has been considered. Two finite element (FE) models, in macro and micro scales have been developed to investigate the effective parameters in contact mechanics of laterally graded materials loaded by flat and triangular rigid stamps. In macro scale model, the laterally graded half-plane is discretized by piecewise homogeneous layers for which the material properties are specified at the centroids by Mori-Tanaka method. In micro scale model, functionally graded material (FGM) structure has been modeled as ideal solid quadrant particles which are spatially distributed in a homogeneous matrix. Boundary conditions and... 

    A comprehensive study on the critical ventilation velocity in tunnels with different geometries

    , Article International Journal of Ventilation ; Volume 14, Issue 3 , Mar , 2015 , Pages 303-320 ; 14733315 (ISSN) Kazemipour, A ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    VEETECH Ltd  2015
    Abstract
    Longitudinal ventilation is a common technique for smoke management during a fire accident within tunnels. In this paper, fire and smoke movement behaviour in longitudinally ventilated tunnels is investigated focusing on critical ventilation velocity. Firstly, critical velocity (VC) is evaluated for different heat release rates and results are compared and verified with model scale experimental data. Secondly, two fire scenarios inside tunnels with different cross sections are arranged and the reliability of some existing correlations for VC is explored. Results illustrate that using a combined geometric scale rather than the traditional single length-scale ones results in better estimation... 

    Modeling of dislocation density and strength on rheoforged A356 alloy during multi-directional forging

    , Article Computational Materials Science ; Vol. 81 , 2014 , pp. 284-289 Kavosi, J ; Saei, M ; Kazeminezhad, M ; Dodangeh, A ; Sharif University of Technology
    Abstract
    In this study, a hybrid model is presented to predict the dislocation density and strength evolution of the rheoforged non-dendritic A356 alloy during multi-directional forging. Regarding the characteristics of non-dendritic A356 alloy, combination of Shear Lag and Nes models is used for the eutectic structure, and Nes model is used for the α-Al globular phase. The aspect ratio variations of Si particles in eutectic structure during 3 passes of multi-directional forging do not change the model predictions, significantly. Model predictions on shear stress are in good agreement with experimental results of shear punch test  

    Prediction of equilibrium mixing state in binary particle spouted beds: Effects of solids density and diameter differences, gas velocity, and bed aspect ratio

    , Article Advanced Powder Technology ; Volume 26, Issue 5 , 2015 , Pages 1371-1382 ; 09218831 (ISSN) Karimi, H ; Dehkordi, A. M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The state of solids mixing can be considered as a key factor in accomplishment of high efficiency and a uniform product in gas-solid fluidized-beds operating with several different particle sizes. In the present work, coupled DEM-CFD approach was used to carefully investigate the mixing process of binary particles in flat-bottom spouted beds. In this regard, simultaneous effects of particle specifications, operating conditions, and bed dimensions on the equilibrium mixing state of solid mixture were evaluated in detail. Moreover, taking into account the contribution of various parameters, the obtained simulation results were used to draw a correlation for predicting the equilibrium mixing... 

    Water drop impact on a semi-cylindrical convex hot surface for a diameter ratio of unity

    , Article Experimental Thermal and Fluid Science ; Volume 106 , 2019 , Pages 68-77 ; 08941777 (ISSN) Jowkar, S ; Morad, M. R ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    When a liquid drop impacts on a hot non-flat surface the curvature of the surface and its geometrical characteristics transmute the physical regimes and their boundary compared to a flat surface impact. The present experimental study is focused on water drop impingement on a mimetic solid semi-cylindrical convex hot surface, with a size equal to the drop. The thermal versus inertia map of generated regimes is obtained, while some well-known regimes associated with a flat surface are not observed for the present non-flat impacts. These include rebounding of the main drop and atomization which are common observed phenomena when the hot surface is flat. The maximum spreading of the droplet is... 

    Study on the effect of jets geometry in liquid atomization based on nonlinear stability analysis

    , Article ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018, 11 June 2018 through 15 June 2018 ; Volume 4A-2018 , 2018 ; 9780791851050 (ISBN) Jafari, S ; Nehzati, T ; International Gas Turbine Institute ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    In this paper, nonlinear instability of an elliptical jet is investigated by considering the impacts of orifice geometry variations using regular perturbation method. In the breakup mechanisms, created disturbances on the jet interfaces will grow owing to the nonlinear dynamics of fluid. In this study, a scrutiny of nonlinear cylindrical jet breakup is done initially. Next, Cosserat equations as a low order form of Navies-Stokes equations are solved on the nonlinear form to exert the impacts of orifice deformation on various aspect ratios. These nonlinear equations, Cosserat equations, are linearly solved in the past papers. As a result, the dispersion equation is derived to find the most... 

    Developing a metamodel based upon the DOE approach for investigating the overall performance of microchannel heat sinks utilizing a variety of internal fins

    , Article International Journal of Heat and Mass Transfer ; Volume 149 , 2020 Hosseinpour, V ; Kazemeini, M ; Rashidi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, the effects of geometry and operating conditions upon the thermal and hydraulic performance of Finned Microchannel Heat Sink (FMCHS) were investigated. Water and aluminum were considered as fluid and solid for the computational domain (30 mm × 0.8 mm × 0.8 mm). The Microchannel (MC) was supposed to have 0.65 mm height with an aspect ratio of 0.5. CFD analysis was applied for the assessments of four-types of micro-fins (i.e., conical, pyramidal, cylindrical and cubical). In order to evaluate the effects of height, diameter, the spacing of fins and Reynolds number on the overall performance of FMCHS, central composite design at five levels was used to generate design points.... 

    The effect of the second excitation frequency mode under different conditions on the fluid streaming and microparticles acoustophoresis with the aim of separating biological cells

    , Article Computer Methods and Programs in Biomedicine ; Volume 184 , 2020 Hosseini, M ; Hasani, M. A ; Biglarian, M ; Amoei, A. H ; Toghraie, D ; Mehrizi, A. A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and objective: In this study, the effect of the second excitation frequency mode under different conditions on the fluid streaming and its microparticles displacement is investigated. Methods: For this purpose, some variable parameters such as the particle diameter, microchannel aspect ratio, and applied frequency modes have been selected to study. The resulted acoustic streaming was scrutinized to understand the physics of the problem under different geometrical and input conditions. Finally, the effect of the increasing the microparticle size and aspect ratio of the microchannel, simultaneously, has been evaluated. Results: The results demonstrated that increasing the... 

    Flow field analysis around the ship fin stabilizer including free surface

    , Article Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 31 May 2009 through 5 June 2009, Honolulu, HI ; Volume 4, Issue PART A , 2009 , Pages 603-608 ; 9780791843444 (ISBN) Hoseini Dadmarzi, F ; Ghassemi, H ; Ghadimi, P ; Ommani, B ; Sharif University of Technology
    Abstract
    Fin stabilizers are very important device for controlling the ship roll motion against the external moments due to wave. This paper presents numerical results for flow field simulation and the hydrodynamic performance of fin stabilizer attached to a ship hull with free surface effects. Combination of CFD and RANS method has been used for this study. The fin is nonrectangular NACA0015 profile section with a finite aspect ratio. The numerical results include pressure distributions and flow field around the fin which are used to calculate lift coefficients and free surface elevation as the main interest. Some results are compared with available experimental and numerical data in literature and... 

    Thorough tuning of the aspect ratio of gold nanorods using response surface methodology

    , Article Analytica Chimica Acta ; Volume 779 , 2013 , Pages 14-21 ; 00032670 (ISSN) Hormozi Nezhad, M. R ; Robatjazi, H ; Jalali Heravi, M ; Sharif University of Technology
    2013
    Abstract
    In the present work a central composite design based on response surface methodology (RSM) is employed for fine tuning of the aspect ratios of seed-mediated synthesized gold nanorods (GNRs). The relations between the affecting parameters, including ratio of l-ascorbic acid to Au3+ ions, concentrations of silver nitrate, CTAB, and CTAB-capped gold seeds, were explored using a RSM model. It is observed that the effect of each parameter on the aspect ratio of developing nanorods highly depends on the value of the other parameters. The concentrations of silver ions, ascorbic acid and seeds are found to have a high contribution in controlling the aspect ratios of NRs. The optimized parameters led... 

    Controlling aspect ratio of colloidal silver nanorods using response surface methodology

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 393 , 2012 , Pages 46-52 ; 09277757 (ISSN) Hormozi Nezhad, M. R ; Jalali Heravi, M ; Robatjazi, H ; Ebrahimi Najafabadi, H ; Sharif University of Technology
    2012
    Abstract
    The properties of metallic nanorods vary due to changes in their composition, size and shape, which all depend on the aspect ratio of the nanorods. This work focuses on the optimization of the aspect ratio of silver nanorods using response surface methodology (RSM). Seed-mediated approach, which is the newest method with less difficulty, has been used for the synthesis of silver nanorods. First, silver ions were reduced with sodium borohydride in the presence of sodium citrate dehydrate, as stabilizer. Then, the prepared seeds were added to a solution containing more metal salts, a weak reducing agent (ascorbic acid) and a rod-like micellar template (cetyltrimethylammonium bromide, CTAB).... 

    Reduction of production rate in y-shaped microreactors in the presence of viscoelasticity

    , Article Analytica Chimica Acta ; Volume 990 , 2017 , Pages 121-134 ; 00032670 (ISSN) Helisaz, H ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Abstract
    The viscoelasticity effects on the reaction-diffusion rates in a Y-shaped microreactor are studied utilizing the PTT rheological model. The flow is assumed to be fully developed and considered to be created under a combined action of electroosmotic and pressure forces. In general, finite-volume-based numerical simulations are conducted to handle the problem; however, analytical solutions based on the depthwise averaging approach are also obtained for the case for which there is no reaction between the inlet components. The analytical solutions are found to predict accurate results when the width to height ratio is at least 10 and acceptable results for lower aspect ratios. An investigation... 

    An experimental investigation of transition point over a quasi-2D swept wing by using hot film

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 2 , February , 2015 , Pages 243-255 ; 09544100 (ISSN) Hassanzadeh Khakmardani, M ; Soltani, M. R ; Masdari, M ; Davari, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this study, we performed experiments to investigate the effect of sweep angle on the transition location of laminar flow to turbulent flow. Three half wing models were used, each having a different sweep angle but with the same aspect ratio in various angles of attack. Two flat plates were used at the ends of the swept wing models to prevent the flow from rolling up over the wing. By simulating flow over infinity swept wing by eliminating tip vertices, the effect of sweep angle on flow transition phenomenon was investigated. The experiments included the study of transition flow via hot-film sensors, which were glued on the wing surface. We found that the small leading-edge radius and low... 

    A new method for design of fixed wing micro air vehicle

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 5 , April , 2015 , Pages 837-850 ; 09544100 (ISSN) Hassanalian, M ; Khaki, H ; Khosravi, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    This study attempts to present a new and comprehensive cycle for the design of fixed wing micro air vehicles. The idea is to propose a complete cycle containing all micro air vehicles design subjects such as aerodynamics, stability, structure, and navigation. The main aim of the cycle is to decrease the designing time for an optimum design. In this method, the sizing process is started simultaneously, which involves the following cases: specification of mission and aviation plan; determination of planform and aspect ratio; constraint analysis; estimation of plane weight. Completion of these four phases results in the specification of the geometry and dimensions of the wing in an optimum... 

    Effective anti-plane moduli of couple stress composites containing elliptic multi-coated nano-fibers with interfacial damage and variational bounds

    , Article International Journal of Damage Mechanics ; Volume 30, Issue 9 , 2021 , Pages 1351-1376 ; 10567895 (ISSN) Hashemian, B ; Shodja, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Prediction of the anti-plane moduli of solids consisting of a given distribution of unidirectionally aligned elliptic multi-coated fibers with interfacial damage is the focus of this paper. The fibers and their coating layers may be in the order of nano or micro scales. All the constituent phases of the composite are supposed to be described in terms of couple stress elasticity. Accordingly, the bounds for the overall shear moduli of the aforementioned composites are provided by employing the principles of minimum potential and complementary energies. Certain subtleties associated with the elliptic multi-coated fibers for three cases of pure sliding (completely damaged), imperfect (partially... 

    Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 1 , January , 2015 ; 15393755 (ISSN) Hashemi, S. M ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the... 

    Nonlinear free vibration analysis of in-plane Bi-directional functionally graded plate with porosities resting on elastic foundations

    , Article International Journal of Applied Mechanics ; Volume 14, Issue 1 , 2022 ; 17588251 (ISSN) Hashemi, S ; Shahri, P. K ; Beigzadeh, S ; Zamani, F ; Eratbeni, M. G ; Mahdavi, M ; Heidari, A ; Khaledi, H ; Abadi, M. R. R ; Sharif University of Technology
    World Scientific  2022
    Abstract
    This paper deals with the nonlinear free vibration analysis of in-plane bi-directional functionally graded (IBFG) rectangular plate with porosities which are resting on Winkler-Pasternak elastic foundations. The material properties of the IBFG plate are assumed to be graded along the length and width of the plate according to the power-law distribution, as well as, even and uneven types are taken into account for porosity distributions. Equations of motion are developed by means of Hamilton's principle and von Karman nonlinearity strain-displacement relations based on classical plate theory (CPT). Afterward, the time-dependent nonlinear equations are derived by applying the Galerkin... 

    Retraction notice to “Numerical study on free convection in a U-shaped CuO/water nanofluid-filled cavity with different aspect ratios using double-MRT lattice Boltzmann” [Therm. Sci. Eng. Progr. 14(2019), 100373]

    , Article Thermal Science and Engineering Progress ; Volume 21 , 2021 ; 24519049 (ISSN) Hasanzadeh Fard, A ; Hooshmand, P ; Mohammaei, M ; Ross, D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Concern has been raised about the identity of the author “David Ross” as the listed institution has denied the affiliation of a person with this name. Further inquiry revealed that the names of the co-authors were added to the revised version of the article without notifying the handling Editor, which is contrary to the journal policy on changes to authorship. Also, the co-authors were not able to provide a reasonable description of their contribution to the article.... 

    Visual technique for detection of gas-liquid two-phase flow regime in the airlift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 75, Issue 3-4 , January , 2011 , Pages 327-335 ; 09204105 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Simplicity of manufacturing and high reliability of airlift pumps have promoted these pumps to be used in different industries, such as petrochemical and oil industries, especially in oil recovery from dead wells. One of the main parameters affecting the performance of these pumps is two-phase flow regime in the main pipe of the pump. In this research, experimental data are utilized to investigate the influence of the flow regimes on the performance of an airlift pump. The data are obtained for air-water two-phase flow in a vertical pipe with a diameter of d = 50. mm and an aspect ratio of L/d = 120. In this study, the gas liquid upward two-phase flow regime in the upriser pipe is... 

    Machine learning-aided scenario-based seismic drift measurement for RC moment frames using visual features of surface damage

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 205 , 2022 ; 02632241 (ISSN) Hamidia, M ; Mansourdehghan, S ; Asjodi, A. H ; Dolatshahi, K.M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This paper presents a novel computer vision-based methodology for assessment of the seismic damage in reinforced concrete moment frames using visual characteristics of surface damage following an earthquake. An extensive collected database comprising 974 images associated with 256 cyclic-loaded damaged beam-column joints, providing a set of cracking and crushing progression with increasing the evolution of damage level, is collected and used for the development and validation of the methodology. Employing image processing techniques, the characteristics of the surface damage, including the cracking length and crushing areas, are measured and used in a scenario-based assessment for the...