Loading...
Search for: aspect-ratio
0.011 seconds
Total 217 records

    Simulation of a falling droplet in a vertical channel with rectangular obstacles

    , Article European Journal of Mechanics, B/Fluids ; Volume 68 , March-April , 2018 , Pages 108-117 ; 09977546 (ISSN) Merdasi, A ; Ebrahimi, S ; Moosavi, A ; Shafii, M. B ; Kowsary, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Droplet microfluidic systems have attracted a large amount of research due to their numerous applications in biomedical micro-devices and drug discovery/delivery platforms. One of the most important problems in such systems is to investigate deformation, coalescence, and breakup of droplets within the channel. The present study demonstrates numerical simulation of a falling droplet subject to gravitational force in a channel with embedded rectangular obstacles. The lattice Boltzmann method incorporated using He–Chen–Zhang method for two phase flow is employed. Two rectangular obstacles with inverse aspect ratios are introduced to investigate the mechanism of breakup and deformation of the... 

    Experimental and analytical study of block slit damper

    , Article Journal of Constructional Steel Research ; Volume 141 , February , 2018 , Pages 167-178 ; 0143974X (ISSN) Ahmadie Amiri, H ; Pournamazian Najafabadi, E ; Esmaeilpour Estekanchi, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study proposes a novel type of metallic yielding damper called block slit damper or BSD. This damper is a slit damper with very low height to thickness ratio. This device has high shear capacities, and is more economical than SSD devices with high height to thickness ratios. Based on theoretical analysis the formulation for the BSD device's main parameters is derived. Then to investigate the hysteretic behavior of the proposed devices, 5 specimens with different aspect ratios (height-width ratios) were manufactured and tested in a quasi-static manner. The tests revealed that by reducing the aspect ratios, the shear and energy dissipation capacity increases while the displacement... 

    Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels

    , Article International Journal of Multiphase Flow ; 2018 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Ghorbanhoseini, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    An experimental investigation of primary breakup dynamics and spray characteristics of a rotary atomizer with high aspect ratio radial-axial discharge channel is described. A high-resolution shadow imaging technique with pulsed backlight illumination was used for spray visualization. For the rotary atomizer with high aspect ratio discharge channel and radial-axial orientation, visualization showed the occurrence of Centripetal–Coriolis-induced stream-mode injection for all operating conditions. In this mode of injection, a crescent liquid film forms in the channel exit and issues from the orifice as a liquid column or a thin liquid sheet depending on atomizer operating conditions. It was... 

    Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell

    , Article Journal of Biomechanics ; Volume 67 , January , 2018 , Pages 37-45 ; 00219290 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the... 

    Primary breakup dynamics and spray characteristics of a rotary atomizer with radial-axial discharge channels

    , Article International Journal of Multiphase Flow ; Volume 111 , 2019 , Pages 315-338 ; 03019322 (ISSN) Rezayat, S ; Farshchi, M ; Ghorbanhoseini, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    An experimental investigation of primary breakup dynamics and spray characteristics of a rotary atomizer with high aspect ratio radial-axial discharge channel is described. A high-resolution shadow imaging technique with pulsed backlight illumination was used for spray visualization. For the rotary atomizer with high aspect ratio discharge channel and radial-axial orientation, visualization showed the occurrence of Centripetal–Coriolis-induced stream-mode injection for all operating conditions. In this mode of injection, a crescent liquid film forms in the channel exit and issues from the orifice as a liquid column or a thin liquid sheet depending on atomizer operating conditions. It was... 

    Developing a metamodel based upon the DOE approach for investigating the overall performance of microchannel heat sinks utilizing a variety of internal fins

    , Article International Journal of Heat and Mass Transfer ; Volume 149 , 2020 Hosseinpour, V ; Kazemeini, M ; Rashidi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, the effects of geometry and operating conditions upon the thermal and hydraulic performance of Finned Microchannel Heat Sink (FMCHS) were investigated. Water and aluminum were considered as fluid and solid for the computational domain (30 mm × 0.8 mm × 0.8 mm). The Microchannel (MC) was supposed to have 0.65 mm height with an aspect ratio of 0.5. CFD analysis was applied for the assessments of four-types of micro-fins (i.e., conical, pyramidal, cylindrical and cubical). In order to evaluate the effects of height, diameter, the spacing of fins and Reynolds number on the overall performance of FMCHS, central composite design at five levels was used to generate design points.... 

    Axis-switching and breakup of rectangular liquid jets

    , Article International Journal of Multiphase Flow ; Volume 126 , May , 2020 Morad, M. R ; Nasiri, M ; Amini, G ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The behavior of low-speed liquid jets emerging from rectangular orifices into a quiescent air is studied numerically. After ejection, the rectangular cross-section transforms into an elliptical form along the jet and while axis-switching includes elliptical cross-sections only, the rectangular shape never establishes again. The optimum wavenumber, corresponding to the most dominant wave, is found to be greater in orifices with higher aspect ratios and, as a result, breakup length of the jet will be shorter. The breakup length decreases exponentially with the initial amplitude of disturbances. Moreover, it is observed that the form of final breakup leads to elimination of the satellite... 

    Studying effect of entrainment on dynamics of debris flows using numerical simulation

    , Article Computers and Geosciences ; Volume 134 , 2020 Nikooei, M ; Manzari, M. T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper studies entrainment phenomenon in debris flows using full flow (non-depth-averaged) equations and an Incompressible Smoothed Particle Hydrodynamics (ISPH) method. A viscoplastic constitutive relationship is adopted for both the overlying fluid and bed material. Collapse of a two-dimensional dry granular column on a horizontal bed consisting of entrainable dry granular material is considered as a benchmark problem. The adopted ISPH method for simulation of collapse over rigid and entrainable beds is validated using available numerical and experimental data. To quantify the effects of entrainment on dynamics of flow, the initial aspect ratio of granular column (a) is varied and the... 

    Thermal-exergetic behavior of triangular vortex generators through the cylindrical tubes

    , Article International Journal of Heat and Mass Transfer ; Volume 151 , 2020 Pourhedayat, S ; Pesteei, S. M ; Ebrahimi Ghalinghie, H ; Hashemian, M ; Aqeel Ashraf, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, new arrangements of triangular winglet as a turbulator are numerically studied through a cylindrical tube. Triangular winglets are commonly placed on one side of a rectangular plate and inserted inside the tube. However, in present work, the winglets are located on both sides of the rectangular plate to further enhance the thermal performance of the fluid flow through the tube. Both backward and forward configurations of the winglets are analysed. Moreover, despite the importance of “latitudinal pitch of the winglets” and “winglet-plate angle” no investigation has been evaluated these parameters which will be evaluated in this work. Moreover, as no exergetic evaluation has... 

    Seismic evaluation of steel plate shear wall systems considering soil-structure interaction

    , Article Soil Dynamics and Earthquake Engineering ; Volume 145 , 2021 ; 02677261 (ISSN) Sarcheshmehpour, M ; Shabanlou, M ; Meghdadi, Z ; Estekanchi, H. E ; Mofid, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study investigates the various effects of Soil-Structure Interaction (SSI) on the seismic behavior of steel frames with Steel Plate Shear Wall (SPSW) lateral resisting systems. Nine steel frames with various aspect ratios are studied under multiple seismic hazard levels. The SPSWs are modeled based on the strip model concept, and the Soil-Structure Systems are simulated using the substructure method. The soil beneath the structure is considered as a homogeneous elastic half-space. The Endurance Time method is exploited for nonlinear dynamic analysis of the fixed-base structures and soil-structure systems. Results indicate that use of fixed-base models leads to the significant... 

    Retraction notice to “Numerical study on free convection in a U-shaped CuO/water nanofluid-filled cavity with different aspect ratios using double-MRT lattice Boltzmann” [Therm. Sci. Eng. Progr. 14(2019), 100373]

    , Article Thermal Science and Engineering Progress ; Volume 21 , 2021 ; 24519049 (ISSN) Hasanzadeh Fard, A ; Hooshmand, P ; Mohammaei, M ; Ross, D ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Concern has been raised about the identity of the author “David Ross” as the listed institution has denied the affiliation of a person with this name. Further inquiry revealed that the names of the co-authors were added to the revised version of the article without notifying the handling Editor, which is contrary to the journal policy on changes to authorship. Also, the co-authors were not able to provide a reasonable description of their contribution to the article.... 

    Data-driven damage assessment of reinforced concrete shear walls using visual features of damage

    , Article Journal of Building Engineering ; Volume 53 , 2022 ; 23527102 (ISSN) Mansourdehghan, S ; Dolatshahi, K. M ; Asjodi, A. H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper proposes a damage assessment framework based on the visual features of a damaged reinforced concrete shear wall, such as crack pattern distribution, crushing areal density, aspect ratio, and the presence of the boundary condition. The study contains two parts including: identifying the performance level of the damaged walls (i.e., Immediate Occupancy, Life Safety, and Collapse Prevention) and estimating the residual strength and drift ratio of the walls. The research database contains 236 images of 72 reinforced concrete shear walls tested in the laboratory under the quasi-static cyclic loadings at various drift ratios between 0 and 4%. To identify the performance level of a... 

    Investigating the behavior of cracks in welded zones of supporting structure of spherical pressure vessel under seismic loading

    , Article Journal of Constructional Steel Research ; Volume 191 , 2022 ; 0143974X (ISSN) Tafazoli, S ; Ghazi, M ; Adibnazari, S ; Rofooei, F. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the numerical studies on the semi-elliptical crack behavior in different locations of welded zones in the supporting structure of a spherical pressure vessel under an earthquake are presented. The cracks in the welded zones of supporting structures under earthquake effects may jeopardize the safety of spherical pressure vessels and result in catastrophic failure. A detailed finite element sub-modeling technique is carried out to compute the mixed-mode stress intensity factors along the crack front. Furthermore, crack behavior with different aspect ratios a/c: 0.25, 0.5, and 0.75 at the weld and the heat-affected zone of the supporting structure is evaluated. The... 

    Spatial analysis of damage evolution in cyclic-loaded reinforced concrete shear walls

    , Article Journal of Building Engineering ; Volume 49 , 2022 ; 23527102 (ISSN) Asjodi, A. H ; Dolatshahi, K. M ; Ebrahimkhanlou, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper introduces a probabilistic framework to quantify the spatial distribution of cracking and crushing in rectangular reinforced concrete shear walls at different drift ratios. In this research, a comprehensive probabilistic spatial analysis is conducted on an extensive collected database of reinforced concrete shear walls tested under the quasi-static cyclic loading. The database includes 235 images of 72 damaged walls with various geometry and material properties at different drift ratios between 0.0 and 4.0%. Various image processing filters are implemented to the images to highlight the wall areas that are more prone to cracking and crushing. Then, advanced statistical analysis is... 

    Subsonic and supersonic flow-induced vibration of sandwich cylindrical shells with FG-CNT reinforced composite face sheets and metal foam core

    , Article International Journal of Mechanical Sciences ; Volume 215 , 2022 ; 00207403 (ISSN) Taati, E ; Fallah, F ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Based on the linear fluid-solid interaction (FSI) model and classical shell theories, vibration behavior of sandwich cylindrical shells subjected to external incompressible or compressible fluid flow is investigated. The sandwich shell includes the same outer and inner face sheets made of carbon nanotube (CNT) reinforced composites and a metal foam core. The effective mechanical properties of CNT reinforced composites are obtained using the extended rule of mixture. Also, the porosity distribution through the foam thickness is assumed to be in the form of a trigonometric function. Equations of motion and corresponding boundary conditions are derived according to the Donnell's, Love's and... 

    The effect of the second excitation frequency mode under different conditions on the fluid streaming and microparticles acoustophoresis with the aim of separating biological cells

    , Article Computer Methods and Programs in Biomedicine ; Volume 184 , 2020 Hosseini, M ; Hasani, M. A ; Biglarian, M ; Amoei, A. H ; Toghraie, D ; Mehrizi, A. A ; Rostami, S ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Background and objective: In this study, the effect of the second excitation frequency mode under different conditions on the fluid streaming and its microparticles displacement is investigated. Methods: For this purpose, some variable parameters such as the particle diameter, microchannel aspect ratio, and applied frequency modes have been selected to study. The resulted acoustic streaming was scrutinized to understand the physics of the problem under different geometrical and input conditions. Finally, the effect of the increasing the microparticle size and aspect ratio of the microchannel, simultaneously, has been evaluated. Results: The results demonstrated that increasing the... 

    Experimental study of convective heat transfer in the entrance region of an annulus with an external grooved surface

    , Article Experimental Thermal and Fluid Science ; Volume 98 , 2018 , Pages 557-562 ; 08941777 (ISSN) Nouri Borujerdi, A ; Nakhchi, M. E ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    The aim of this experimental work is to study the effect of grooved surfaces in the entrance region of annular flows on local heat transfer. The outer stationary cylinder is grooved and the inner rotating cylinder is smooth. This configuration is applicable in industrial applications such as rotating heat pipes for cooling of superconducting machines or motors rotor, electrical generators where heat generates in the grooves containing wires, transient heating of axial compressor rotor drams, combustion chamber in turbojets, air-cooled axial-flux permanent-magnet machines. The experimental tests were performed based on aspect ratio of the groove, effective Reynolds number and Taylor number.... 

    Water drop impact on a semi-cylindrical convex hot surface for a diameter ratio of unity

    , Article Experimental Thermal and Fluid Science ; Volume 106 , 2019 , Pages 68-77 ; 08941777 (ISSN) Jowkar, S ; Morad, M. R ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    When a liquid drop impacts on a hot non-flat surface the curvature of the surface and its geometrical characteristics transmute the physical regimes and their boundary compared to a flat surface impact. The present experimental study is focused on water drop impingement on a mimetic solid semi-cylindrical convex hot surface, with a size equal to the drop. The thermal versus inertia map of generated regimes is obtained, while some well-known regimes associated with a flat surface are not observed for the present non-flat impacts. These include rebounding of the main drop and atomization which are common observed phenomena when the hot surface is flat. The maximum spreading of the droplet is... 

    Experimental investigation of the bubble motion and its ascension in a quiescent viscous liquid

    , Article Experimental Thermal and Fluid Science ; Volume 103 , 2019 , Pages 274-285 ; 08941777 (ISSN) Oshaghi, M. R ; Shahsavari, M ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In the present research, the rising behavior of air bubble in a viscous liquid is investigated experimentally. Aqueous solutions of glycerol and CMC were used as the Newtonian and shear-thinning non-Newtonian viscous liquids, respectively. The bubble is formed via injection of air by a syringe pump and rises in the quiescent viscous liquid. The process was captured using a high-speed camera (1000 fps) and was post processed to obtain the bubble characteristics such as the center of mass and aspect ratio. The experimental results were verified using the existing literatures and the non-dimensional numbers were reduced to two (Velocity number and Flow number) by lumping the parameters. In... 

    Identification of nonlinear model for rotary high aspect ratio flexible blade using free vibration response

    , Article Alexandria Engineering Journal ; Volume 59, Issue 4 , August , 2020 , Pages 2131-2139 Mahariq, I ; Kavyanpoor, M ; Ghalandari, M ; Nazari, M. A ; Bui, D. T ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Nonlinear identification of a narrow cantilever blade undergoing free vibration was studied. In the absence of forced excitation and because of general data deficiency of this system, the current identification methods cannot be applied with sufficient accuracy. A new identification approach was introduced in the present study based on nonlinear free vibration decay. Nonlinear free response of the presented system is determined by the coupling of generalized variation iteration and the modified differential transformation methods. The comparisons between the experiments and calculations is highlighted the good accuracy of the identified nonlinear model. © 2020 Faculty of Engineering,...