Loading...
Search for: asphaltene-precipitation
0.01 seconds

    Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach

    , Article Journal of Petroleum Exploration and Production Technology ; 2018 ; 21900558 (ISSN) Iraji, S ; Ayatollahi, S ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Asphaltene precipitation is known to be responsible for serious challenges in oil industry such as wellbore damage, oil flow reduction, and plugging of transportation lines. The traditional methods to remove asphaltene deposition are mostly based on chemical solvent. One of the recent proposed green and cost–effect remedial methods is the application of microorganisms capable of consuming the heavy hydrocarbon chains. The cell surface hydrophobicity among others effectively manipulates the efficiency of the microorganism for asphaltene degradation. Besides, surface active agents would affect the microorganism adhesion and cell surface properties, and alters its hydrophobicity. Investigating... 

    Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 2 , 2019 , Pages 1413-1422 ; 21900558 (ISSN) Iraji, S ; Ayatollahi, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Asphaltene precipitation is known to be responsible for serious challenges in oil industry such as wellbore damage, oil flow reduction, and plugging of transportation lines. The traditional methods to remove asphaltene deposition are mostly based on chemical solvent. One of the recent proposed green and cost–effect remedial methods is the application of microorganisms capable of consuming the heavy hydrocarbon chains. The cell surface hydrophobicity among others effectively manipulates the efficiency of the microorganism for asphaltene degradation. Besides, surface active agents would affect the microorganism adhesion and cell surface properties, and alters its hydrophobicity. Investigating... 

    Experimental investigation of the asphaltene deposition process during different production schemes

    , Article Oil and Gas Science and Technology ; Volume 66, Issue 3 , 2011 , Pages 507-519 ; 12944475 (ISSN) Bagheri, M. B ; Kharrat, R ; Ghotby, C ; Sharif University of Technology
    2011
    Abstract
    Experimental Investigation of the Asphaltene Deposition Process during Different Production Schemes - This paper presents the results of asphaltene precipitation and deposition during lean gas injection, CO2 injection and natural depletion in reservoir conditions. In addition, the effect of variations in operating pressure, injection gas concentration and production rate on asphaltene precipitation and deposition were investigated. The severity of asphaltene deposition was found to be more pronounced in lean gas injection in comparison with CO2 injection and natural depletion. Increasing the flow rate in natural depletion xperiments showed a considerable increase in asphaltene deposition,... 

    Experimental investigation and thermodynamic modeling of asphaltene precipitation

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1384-1390 ; 10263098 (ISSN) Jafari Behbahani, T ; Ghotbi, C ; Taghikhani, V ; Shahrabadi, A ; Sharif University of Technology
    2011
    Abstract
    Asphaltene precipitation may occur during pressure depletion or gas injection processes in a reservoir. This phenomenon is an important problem during oil production, because it can result in formation damage and the plugging of wellbore and surface facilities. In this work, the precipitation of asphaltenes in an Iranian crude oil, under different pressures, is measured, using an experimental set up based on high-pressure isothermal expansion and also atmospheric titration. For the particular oil investigated, compositional data, precipitation phase diagrams, and bubble point and onset pressures are reported. Also, in this work, the Perturbed Chain form of the Statistical Associating Fluid... 

    Experimental investigation and modeling of asphaltene precipitation due to Gas Injection

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 31, Issue 1 , 2012 , Pages 89-98 ; 10219986 (ISSN) Moradi, S ; Rashtchian, D ; Ganjeh Ghazvini, M ; Emadi, M. A ; Dabir, B ; Sharif University of Technology
    2012
    Abstract
    Asphaltene instability is one of the major problems in gas injection projects throughout the world. Numerous models have been developed to predict asphaltene precipitation; The scaling equation is an attractive tool because of its simplicity and not involving complex properties of asphaltene. In this work, a new scaling model is presented to account for asphaltene precipitation due to gas injection at reservoir conditions. Extensive published data from literature have been used in model preparation. To check predictive capability of the equation, miscible gas injection experiments are conducted for a southwest Iranian oil reservoir. Experimental results show that methane injection has... 

    Experimental determination of interfacial tension and miscibility of the CO2-crude oil system; Temperature, pressure, and composition effects

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 1 , December , 2014 , p. 61-69 ; ISSN: 00219568 Hemmati-Sarapardeh, A ; Ayatollahi, S ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Interfacial tension (IFT) as one of the main properties for efficient CO2 flooding planning in oil reservoirs depends strongly on pressure, temperature, and composition of the reservoir fluids. Therefore, it is important to measure this property at real reservoir conditions for successful field development plan. In this study, an axisymmetric drop shape analysis (ADSA) has been utilized to measure the equilibrium IFTs between crude oil and CO2 at different temperatures and pressures. Moreover, minimum miscibility pressures (MMP) and first-contact miscibility pressures (P max) of crude oil/CO2 systems at different temperatures are determined by applying the vanishing interfacial tension (VIT)... 

    Experimental determination of equilibrium interfacial tension for nitrogen-crude oil during the gas injection process: The role of temperature, pressure, and composition

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 11 , September , 2014 , p. 3461-3469 ; ISSN: 00219568 Hemmati-Sarapardeh, A ; Ayatollahi, S ; Zolghadr, A ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Nitrogen has emerged as a competitive gas injection alternative for gas-based enhanced oil recovery processes in the past two decades. The injection of nitrogen into the reservoirs has improved the oil recovery efficiency in various oil reservoirs from heavy to volatile oils. As it is known, interfacial tension (IFT) plays a key role in any enhanced oil recovery process, particularly gas injection processes; therefore, its accurate determination is crucial for the design of any gas injection process especially at reservoir condition. In this study, an axisymmetric drop shape analysis (ADSA) was utilized to measure the equilibrium IFTs between crude oil and N2 at different temperature levels... 

    Experimental and modelling investigations of asphaltene precipitation during pressure depletion and gas injection operations

    , Article Petroleum Science and Technology ; Vol. 32, issue. 15 , August , 2014 , pp. 1868-1875 ; ISSN: 10916466 Nakhli, H ; Alizadeh, A ; Afshari, S ; Kharrat, R ; Ghazanfari, M ; Sharif University of Technology
    Abstract
    Asphaltene precipitation problems manifest themselves in different stages of oil reservoirs production. Experimental and modeling investigations are, therefore, employed as promising tools to assist in predictions of asphaltene precipitation problems and selection of proper production facilities. This study concerns experimental and modeling investigations of asphaltene precipitation during natural production and gas injection operations for a heavy Iranian crude oil at reservoir conditions. First, with design and performance of high pressure-high temperature experiments, asphaltene precipitation behavior is comprehensively investigated; the effects of pressure and temperature are fully... 

    Evaluation of PC-SAFT model and support vector regression (SVR) approach in prediction of asphaltene precipitation using the titration data

    , Article Fluid Phase Equilibria ; Volume 456 , 2018 , Pages 171-183 ; 03783812 (ISSN) Mashhadi Meighani, H ; Ghotbi, C ; Jafari Behbahani, T ; Sharifi, K ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Asphaltene deposition in porous media, wellbore and surface facilities has been a severe problem in petroleum industry which causes considerable remediation costs annually. Asphaltenes are heavy and polydisperse fractions of crude oil which are insoluble in n-alkanes such as n-heptane. In this work, three Iranian crude oils were prepared for titration experiments with n-pentane, n-heptane and n-dodecane at different solvent ratios and constant temperature. The experimental data were correlated by perturbed chain form of statistical associating fluid theory (PC-SAFT). The association of asphaltene molecules has been considered in this model with adjusting the uncertain parameters (such as... 

    Estimating phase behavior of the asphaltene precipitation by GA-ANFIS approach

    , Article Petroleum Science and Technology ; Volume 36, Issue 19 , 2018 , Pages 1582-1588 ; 10916466 (ISSN) Chen, M ; Sasanipour, J ; Kiaian Mousavy, S. A ; Khajeh, E ; Kamyab, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    This study implements an adaptive neuro-fuzzy inference system (ANFIS) approach to predict the precipitation amount of the asphaltene using temperature (T), dilution ratio (Rv), and molecular weight of different n-alkanes. Results are then evaluated using graphical and statistical error analysis methods, confirming the model’s great ability for appropriate prediction of the precipitation amount. Mean squared error and determination coefficient (R2) values of 0.036 and 0.995, respectively are obtained for the proposed ANFIS model. Results are then compared to those from previously reported correlations revealing the better performance of the proposed model. © 2018, © 2018 Taylor & Francis... 

    Effects of paraffinic group on interfacial tension behavior of CO 2-asphaltenic crude oil systems

    , Article Journal of Chemical and Engineering Data ; Vol. 59, issue. 8 , 2014 , Pages 2563-2569 ; ISSN: 00219568 Mahdavi, E ; Zebarjad, F. S ; Taghikhani, V ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    The interfacial tension (IFT) of a crude oil/CO2 system is recognized as the main property affecting the efficiency of CO2 flooding during an enhanced oil recovery (EOR) process. The addition of a paraffin group hydrocarbon to asphaltenic crude oils as an asphaltene precipitant component is aimed to mimic the asphaltene precipitation process during crude oil production and transportation. Asphaltene precipitation would critically affect the interfacial behavior of crude oil/CO2 systems. In the first part of this study, the equilibrium densities of oil samples which contain n-heptane at different ratios were measured over varying pressures at 323 K. Then, the equilibrium IFT between CO2 and... 

    Dynamic modeling and optimization of asphaltene deposition in reservoir rocks using genetic algorithm

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 6 , 2010 , Pages 4291-4295 ; 9781617386671 (ISBN) Bagheri, M. B ; Kharrat, R ; Hemmatfar, V ; Ghotbi, C ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    Asphaltene deposition is a problematic challenge for oil production. Changes in key parameters like pressure and fluid composition during natural depletion and different gas injection scenarios may result in asphaltene precipitation and deposition. In this work, a model is developed by application of mass balance equations, momentum equation, asphaltene deposition and permeability reduction models. An algorithm is developed to perform iterative procedure to solve the numerical equations that contains highly coupled variables. Indeed, an equation is introduced to calculate the saturation of the precipitated asphaltene phase. Model parameters were determined by genetic algorithm which is a... 

    Developing a novel colloidal model for predicting asphaltene precipitation from crude oil by alkane dilution

    , Article Journal of Molecular Liquids ; Volume 318 , 2020 Shadman, M. M ; Badizad, M. H ; Dehghanizadeh, M ; Saeedi Dehaghani, A. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This research aims to propose a thermodynamic model for predicting asphaltene precipitation upon diluting a crude oil with a paraffinic solvent. To this end, a thorough mathematical formulation was carried out to derive a novel micellization model based on the associative properties of asphaltenic compounds. It was assumed that asphaltenes exist in the oil both as monomeric molecules and aggregated cores; with stabilization latter by attachment of resin on its periphery. The aggregation equilibrium was established by taking into account asphaltene's lyophobic tendency, heat of resin adsorption, and interfacial tension between micelle and oil media which is the main driving factor... 

    Comprehensive study of asphaltene precipitation due to gas injection: Experimental investigation and modeling

    , Article Society of Petroleum Engineers - SPE Enhanced Oil Recovery Conference 2011, EORC 2011, 19 July 2011 through 21 July 2011 ; Volume 1 , July , 2011 , Pages 208-219 ; 9781618390929 (ISBN) Zadeh, G. A. R ; Moradi, S ; Dabir, B ; Emadi, M. A ; Rashtchian, D ; Sharif University of Technology
    2011
    Abstract
    Asphaltene precipitation during natural depletion and miscible gas injection is a common problem in oilfields throughout the world. In this work, static precipitation tests are conducted to investigate effect of pressure, temperature and gas type and concentration on asphaltene instability. Three different oil samples are studied under reservoir conditions with/without nitrogen and methane injection. Besides applying common thermodynamic models, a new scaling equation is presented to predict asphaltene precipitation under HPHT gas injection. Published data from literature are also used in model development. The scaling approach is attractive because it is simple and complex asphaltene... 

    Comparison of the effect of temperature on asphaltene destabilisation in light and heavy live oils

    , Article International Journal of Oil, Gas and Coal Technology ; Volume 16, Issue 4 , 2017 , Pages 342-362 ; 17533317 (ISSN) Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    The main objective of this study is to investigate the effect of temperature on asphaltene destabilisation (precipitation/aggregation) in live oils at elevated pressure conditions. Here, the asphaltene related experiments were performed using solid detection systems, high pressure microscope, and high pressure-high temperature filtration apparatuses in two Iranian light and heavy live oils with different characteristics and stability. The obtained results were interpreted in terms of asphaltene onset pressure, size distribution and average diameter of the aggregates, fractal analysis of the aggregates structures, and the amount of asphaltene precipitation. As well, the results of the... 

    Assessment of asphaltene deposition due to titration technique

    , Article Fluid Phase Equilibria ; Volume 339 , 2013 , Pages 72-80 ; 03783812 (ISSN) Chamkalani, A ; Amani, M ; Kiani, M. A ; Chamkalani, R ; Sharif University of Technology
    2013
    Abstract
    Due to problems followed by asphaltene deposition, which cause many remedial processes and costs, it seemed necessary to develop equations for determining asphaltene precipitation quantitatively or qualitatively. In this study a new scaling equation as a function of temperature, molecular weight, and dilution ratio (solvent) has been developed. This equation can be used to determine the weight percent of precipitated asphaltene in the presence of different precipitants (solvents). The proposed methodology utilizes least square support vector machines/regression (LSSVM/LSSVR) to perform nonlinear modeling. This paper proposes a new feature selection mechanism based on coupled simulated... 

    Asphaltene precipitation due to natural depletion of reservoir: Determination using a SARA fraction based intelligent model

    , Article Fluid Phase Equilibria ; Volume 354 , September , 2013 , Pages 177-184 ; 03783812 (ISSN) Hemmati Sarapardeh, A ; Alipour Yeganeh Marand, R ; Naseri, A ; Safiabadi, A ; Gharagheizi, F ; Ilani Kashkouli, P ; Mohammadi, A. H ; Sharif University of Technology
    2013
    Abstract
    Precipitation of asphaltene leads to rigorous problems in petroleum industry such as: wettability alterations, relative permeability reduction, blockage of the flow with additional pressure drop in wellbore tubing, upstream process facilities and surface pipelines. Experimentally determination of the asphaltene precipitation is costly and time consuming. Therefore, searching for some other quick and accurate methods for determination of the asphaltene precipitation is inevitable. The objective of this communication is to present a reliable and predictive model namely, the least - squares support vector machine (LSSVM) to predict the asphaltene precipitation. This model has been developed and... 

    Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mokhtari, R ; Hosseini, A ; Fatemi, M ; Andersen, S. I ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the possible fluid-fluid interactions during water-flooding in oil reservoirs, that is still debated, is the effect of injected brine salinity on asphaltene destabilization. If asphaltene precipitation is induced by salinity changes in the oil reservoirs and surface facilities, this could have a massive impact on the economy of a low salinity water-flooding project. Therefore, this study aims to investigate the effect of brine salinity on the amount of asphaltene precipitation and the governing destabilization mechanisms. Direct asphaltene precipitation measurements, along with the analyses of optical microscopy images and ion chromatography (IC), indicate that the asphaltene... 

    Asphaltene deposition in different depositing environments: Part 2. Real oil

    , Article Energy and Fuels ; Vol. 28, Issue. 6 , 2014 , Pages 3594-3603 ; ISSN: 08870624 Tavakkoli, M ; Panuganti, S. R ; Taghikhani, V ; Pishvaie, M. R ; Chapman, W. G ; Sharif University of Technology
    Abstract
    This paper is a continuation of our previous paper (part 1; 10.1021/ef401857t), which discussed the roles of different phenomena effecting the deposition of asphaltene from model oil systems and before the onset of asphaltene precipitation. The study in this paper is to understand the depositional tendency of asphaltene using a quartz crystal microbalance with dissipation (QCM-D) measurements and their corresponding modeling for real crude oil systems with emphasis after the onset of asphaltene precipitation  

    Asphaltene deposition in different depositing environments: Part 1. model oil

    , Article Energy and Fuels ; Vol. 28, Issue. 3 , 2014 , pp. 1617-1628 ; ISSN: 08870624 Tavakkoli, M ; Panuganti, S. R ; Vargas, F. M ; Taghikhani, V ; Pishvaie, M. R ; Chapman, W. G ; Sharif University of Technology
    Abstract
    Among the asphaltene flow assurance issues, the most major concern because of asphaltene is its potential to deposit in reservoir, well tubing, flow lines, separators, and other systems along production lines causing significant production losses. Hence, the focus of this study is to understand the depositional tendency of asphaltene using quartz crystal microbalance with dissipation (QCM-D) measurements. The results are presented in two consecutive papers, with this paper (part 1) dealing with model oil systems. The depositing environment is varied by changing the system temperature, asphaltene polydispersity, solvent (asphaltene stability), depositing surface, and flow rate. This paper...