Loading...
Search for: assembly
0.011 seconds
Total 168 records

    An efficient hybrid genetic algorithm to solve assembly line balancing problem with sequence-dependent setup times

    , Article Computers and Industrial Engineering ; Volume 62, Issue 4 , 2012 , Pages 936-945 ; 03608352 (ISSN) Yolmeh, A ; Kianfar, F ; Sharif University of Technology
    2012
    Abstract
    In this paper the setup assembly line balancing and scheduling problem (SUALBSP) is considered. Since this problem is NP-hard, a hybrid genetic algorithm (GA) is proposed to solve the problem. This problem involves assigning the tasks to the stations and scheduling them inside each station. A simple permutation is used to determine the sequence of tasks. To determine the assignment of tasks to stations, the algorithm is hybridized using a dynamic programming procedure. Using dynamic programming, at any time a chromosome can be converted to an optimal solution (subject to the chromosome sequence). Since population diversity is very important to prevent from being trapped in local optimum... 

    Fuzzy-small degrees of freedom representation of linear and angular variations in mechanical assemblies for tolerance analysis and allocation

    , Article Mechanism and Machine Theory ; Volume 46, Issue 4 , April , 2011 , Pages 558-573 ; 0094114X (ISSN) Khodaygan, S ; Movahhedy, M. R ; Foumani, M. S ; Sharif University of Technology
    2011
    Abstract
    Tolerances naturally generate an uncertain environment for design and manufacturing. In this paper, a novel fuzzy based tolerance representation approach for modeling the variations of geometric features due to dimensional tolerances is presented. The two concepts of fuzzy theory and small degrees of freedom are combined to introduce the fuzzy-small degrees of freedom model (F-SDOF). This model is suitable for tolerance analysis of mechanical assemblies with linear and angular tolerances. Based on the fuzzy concept, a new index (called the assemblability index) is introduced which signifies the fitting quality of parts in the assembly. Graphical and numerical representations of tolerance... 

    Enhanced dye loading-light harvesting TiO2 photoanode with screen printed nanorod-nanoparticles assembly for highly efficient solar cell

    , Article Electrochimica Acta ; Volume 169 , 2015 , Pages 395-401 ; 00134686 (ISSN) Jalali, M ; Siavash Moakhar, R ; Kushwaha, A ; Goh, G. K. L ; Riahi-Noori, N ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Morphology tailored TiO2 nano assemblies consisting of nanorods with and without nanoparticle attachments were hydrothermally synthesized and their characteristics and light scattering properties were determined by x-ray diffraction (XRD), nitrogen sorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis). The nanorod-nanoparticles (NR-NP) assemblies and smooth nanorod (NR) double layers were screen printed onto fluorine doped tin oxide coated glass underlayers to fabricate dye-sensitized solar cell (DSSC) photoanodes. The double layer heterogeneous... 

    Development of block copolymer-templated crack-free mesoporous anatase-TiO2 film: tailoring sol–gel and EISA processing parameters and photovoltaic characteristics

    , Article Journal of Materials Science: Materials in Electronics ; Volume 26, Issue 3 , March , 2015 , Pages 1543-1553 ; 09574522 (ISSN) Mozaffari, N ; Mohammadi, M. R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    A new facile strategy for preparation of mesoporous anatase-TiO2 films by a combination of sol–gel and evaporation-induced self-assembly (EISA) processes aided by tri-block Pluronic F127 is reported. Two major parameters, sol preparation and EISA processing parameters, are identified for preparation of mesoporous crack-free films with desired thickness. The mesoporous crack-free films with thickness of 650 nm can be obtained with low water: precursor molar ratio (e.g., 2.5:1) under aging in 10 % relative humidity for 72 h at the low temperature of 5 °C. Although template: precursor molar ratio and annealing temperature show little influence on preparation of crack-free films the optimum... 

    Comparative study on effect of titania morphology for light harvesting and scattering of DSSCs: Mesoporous nanoparticles, microspheres, and dandelion-like particles

    , Article Environmental Progress and Sustainable Energy ; Volume 35, Issue 6 , 2016 , Pages 1818-1826 ; 19447442 (ISSN) Mozaffari, N ; Mohammadi, M. R ; Andaji Garmaroudi, Z ; Musvi Gharavi, P. S ; Sharif University of Technology
    John Wiley and Sons Inc 
    Abstract
    The light scattering and harvesting effects in dye-sensitized solar cells (DSSCs) is studied by controlling morphology, phase composition, and thickness of monolayer and double-layer TiO2 photoanode electrodes. The starting materials for preparation of TiO2 cells, including 25 nm mesoporous anatase nanoparticles, 200 nm anatase microspheres, 10 µm dandelion-like rutile particles and 40 nm nanoparticles containing 80% anatase-20% rutile, are synthesized by evaporation-induced self-assembly, sol-gel, and hydrothermal processes. It was found that the mesoporous anatase nanoparticles may improve light harvesting and dye-sensitization due to their high surface area and small particle size,... 

    Guided mode extraction in monolayer colloidal crystals based on the phase variation of reflection and transmission coefficients

    , Article Optics Communications ; Volume 364 , 2016 , Pages 44-49 ; 00304018 (ISSN) Nekuee, S. A. H ; Akbari, M ; Khavasi, A ; Sharif University of Technology
    Elsevier 
    Abstract
    An accurate and fast method for guided modes extraction in monolayer colloidal crystals and their inverse replicas is presented. These three-dimensional structures are composed of a monolayer of spherical particles that can easily and simply be prepared by self-assembly method in close packed hexagonal lattices. In this work, we describe how the guided modes, even or odd modes and light cone boundary can be easily determined using phase variations of reflection and transmission coefficients. These coefficients are quickly calculated by Fourier modal method. The band structures are obtained for a monolayer of polystyrene particles and two-dimensional TiO2 inverse opal by this proposed method  

    Lot sizing and lead time quotations in assembly systems

    , Article Scientia Iranica ; Volume 16, Issue 2 E , 2009 , Pages 100-113 ; 10263098 (ISSN) Kianfar, F ; Mokhtari, G ; Sharif University of Technology
    Abstract
    In this paper, a simultaneous lead time quotation and lot sizing problem in an assembly system is investigated. We address a production system with a product that has deterministic demand over a T-period planning horizon and is produced in lots because of the economy of scale. If a lot is completed before the demand period, inventory carrying cost is incurred. On shortages, a lead time is quoted to customers and a lead time quotation cost is incurred. Finally, if the order is delivered later than its due date period, a tardiness cost is charged. The components supply lead time is stochastic, which follows a discrete distribution. The problem is to decide on the lot size of products and... 

    Specific picomolar detection of a breast cancer biomarker her-2/neu protein in serum: electrocatalytically amplified electroanalysis by the aptamer/peg-modified electrode

    , Article ChemElectroChem ; Volume 4, Issue 4 , 2017 , Pages 872-879 ; 21960216 (ISSN) Salimian, R ; Kékedy Nagy, L ; Ferapontova, E. E ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    Specific and sensitive electroanalysis of blood-circulating protein cancer biomarkers is often complicated by interference from serum proteins nonspecifically adsorbing at the biosensing interface and masking specific reactions of interest. Here, we have developed an electrocatalytically amplified assay for specific and sensitive analysis of human epidermal growth factor receptor-2 (HER-2/neu, a protein cancer biomarker over-expressed in breast cancers) that allows us to avoid both the interference from bovine serum albumin (BSA) and electrocatalytic amplification of the signal stemming from the specific aptamer−HER-2/neu binding. A HER-2/neu-specific thiolated aptamer sequence was... 

    Meta-model based multi-objective optimisation method for computer-aided tolerance design of compliant assemblies

    , Article International Journal of Computer Integrated Manufacturing ; 2018 ; 0951192X (ISSN) Khodaygan, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Optimal tolerance design is a time-consuming and multi-disciplinary procedure and involves several aspects of design, manufacturing, quality and cost problems. In addition, the quality of assemblies can be significantly affected by the flexibility of components which has not been considered in most of the previous research. In this paper, a new method is proposed for multi-objective optimal tolerance design of compliant assemblies based on an integrated Kriging meta-modelling–NSGA-II–Shannon’s Entropy TOPSIS algorithm. The tolerance propagation of flexible components in the assembly process is modelled through the enhanced Method of Influence Coefficients (MIC). Geometrical variations of key... 

    Layer-by-layer self assembly deposition and characterization of TiO 2 nanoparticles by using a short chain polycation

    , Article EPJ Applied Physics ; Volume 48, Issue 1 , 2009 , Pages 10602p1-10602p7 ; 12860042 (ISSN) Rahman, M ; Taghavinia, N ; Sharif University of Technology
    2009
    Abstract
    Using low molecular weight polyethylenimine (PEI), transparent thin films of TiO2 nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 10 min. The effect of dip time on the growth mode and surface morphology was investigated by scanning electron microscopy (SEM) and non-contact atomic force microscopy (AFM). It was found that growth proceeds in the form of laterally broad islands in case of short dip times, and taller but laterally smaller islands in case of longer dip times. A... 

    Meta-model based multi-objective optimisation method for computer-aided tolerance design of compliant assemblies

    , Article International Journal of Computer Integrated Manufacturing ; Volume 32, Issue 1 , 2019 , Pages 27-42 ; 0951192X (ISSN) Khodaygan, S ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Optimal tolerance design is a time-consuming and multi-disciplinary procedure and involves several aspects of design, manufacturing, quality and cost problems. In addition, the quality of assemblies can be significantly affected by the flexibility of components which has not been considered in most of the previous research. In this paper, a new method is proposed for multi-objective optimal tolerance design of compliant assemblies based on an integrated Kriging meta-modelling–NSGA-II–Shannon’s Entropy TOPSIS algorithm. The tolerance propagation of flexible components in the assembly process is modelled through the enhanced Method of Influence Coefficients (MIC). Geometrical variations of key... 

    Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

    , Article Journal of Dispersion Science and Technology ; 2020 Jiryaei, Z ; Saidi, M. H ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive... 

    Carbonaceous supports decorated with Pt–TiO2 nanoparticles using electrostatic self-assembly method as a highly visible-light active photocatalyst for CO2 photoreduction

    , Article Renewable Energy ; Volume 145 , January , 2020 , Pages 1862-1869 Larimi, A ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Supported Pt–TiO₂ photocatalysts on carbonaceous supports were synthesized by the electrostatic self-assembly method to study CO₂ photoreduction to produce CH₄. Catalytic activities of the prepared photocatalysts were correlated with the particle size and dispersion of the active metal, which in turn depended on the type of carbonaceous support used, varying in the order of multi-walled carbon nanotubes (MWCNT) > Single-walled carbon nanotubes (SWCNT) > reduced graphene oxide > activated carbon. Generally, all catalysts were highly photoresistant with less than 5% loss of activity in terms of CH₄ yield. Pt–TiO₂/multi-walled carbon nanotubes exhibited better catalytic activity compared with... 

    Self-assembly of dandelion-like hydroxyapatite nanostructures via hydrothermal method

    , Article Journal of the American Ceramic Society ; Volume 91, Issue 10 , 2008 , Pages 3292-3297 ; 00027820 (ISSN) Lak, A ; Mazloumi, M ; Mohajerani, M ; Kajbafvala, A ; Zanganeh, S ; Arami, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2008
    Abstract
    Self-assembled dandelion-like hydroxyapatite (HAp) nanostructures were successfully synthesized via a mild template-free hydrothermal process, using ethylenediaminetetraacetic acid (EDTA) as the surfactant. The obtained dandelion-like HAp nanostructures were between 5 and 8 μm in diameter and were composed of radially oriented nanorods with an average diameter of about 200 nm. The X-ray diffraction analysis and Fourier transform infrared spectroscopy were used to characterize the crystalline phase and purity of the synthesized nanostructures. The Brunauer-Emmett-Teller surface area of the dandelion-like nanostructures was measured to be about 39 m2/g. The results of thermal analysis revealed... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Ahmadipouya, S ; Heidarian Haris, M ; Ahmadijokani, F ; Jarahiyan, A ; Molavi, H ; Matloubi Moghaddam, F ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Human society is becoming more intransigent on removing organic dyes from polluted water before discharging to the environment. To fulfill this goal, a magnetic metal-organic framework adsorbent based on functionalized magnetic Fe3O4 nanoparticles and highly water stable UiO-66 with high porosity and sensitivity to the external magnetic field was designed and synthesized via an easy step-by-step self-assembly technique. The synthesized adsorbent magnetic nanoparticles (Fe3O4@UiO-66) were applied to remove organic dyes, i.e., methyl orange (MO) and methylene blue (MB), from a contaminated aqueous solution. The experiments displayed that magnetic Fe3O4@UiO-66 has good adsorption uptake for MO... 

    Evaporation mitigation assessment by self-assembled nano-thickness films in shallow fresh water lake using fixed and semi-floating pans

    , Article Environmental Processes ; Volume 9, Issue 3 , 2022 ; 21987491 (ISSN) Nejatian, A ; Mohammadi, M ; Doulabi, M ; Iraji zad, A ; Tajrishy, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Controlling evaporation plays an essential role in arid and semi-arid water resources systems where it accounts for a considerable amount of reservoirs outflow. In this study, we have evaluated evaporation reduction efficiency of different kinds of self-assembled nano-thickness films. The films consist of six different combinations of stearyl and cetyl alcohols with additives such as jojoba oil, stearic acid, and calcium hydroxide. The study lasted from July to August and utilized two pairs of class A evaporation pans: one pair was semi-floating on Chitgar lake water surface while the other one was located on the shore. The experimental results showed that a monolayer containing 3:1 stearyl... 

    Effect of collision on self-assembly of nanoparticles in zirconia microparticle suspension

    , Article Journal of Dispersion Science and Technology ; Volume 43, Issue 6 , 2022 , Pages 787-795 ; 01932691 (ISSN) Jiryaei, Z ; Saidi, M. H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Nanoparticle halo mechanism is a stabilization method for microparticle suspensions. This study investigates suspension pH and nanoparticles–microparticles collision effects on the stabilization of an aqueous binary suspension. The long-term turbidity measurements show that for the nanosilica suspension stability is directly correlated with pH values; however, in the cases of zirconia and binary suspensions, it is not a monotonic function of pH. It is shown that for binary suspension, the halo mechanism is the primary method affecting the stability of the suspension. The suspension is best-stabilized at pH = 5 that is associated with high halo mechanism efficiency, while increased repulsive... 

    Dynamic & Vibration Analysis of AFM Probe Affected by the Non Uniform Potential Field

    , M.Sc. Thesis Sharif University of Technology Kahrobaiyan, Mohammad Hossein (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    Atomic force microscope (AFM) has a significant capability of imaging surface topography on an atomic scale. It is also widely used for Nanolithography in MEMS/NEMS (micro/nanoelectromechanical systems). Conventional AFMs consist of a cantilever with a sharp conical or pyramidal tip located at the free end of the cantilever that plays an important role in AFM measurements. Scanning across a surface, AFM interacts with the sample surface through its tip. Although the dynamic behavior of the AFM cantilever is complicated, the researchers have been interested in studying AFM dynamic behavior because it has a great influence on the surface imaging process. The imaging rate and contrast of... 

    Preparation of Mesoporous Titania Film Using Block Copolymer Template in Application of Dye-sensitized Solar Cell

    , M.Sc. Thesis Sharif University of Technology Babamahdi, Zahra (Author) ; Mohammadi, Mohammad Reza (Supervisor)
    Abstract
    The Mesoporous Titanium Dioxide film using Sol-Gel method and Evaporation-Induced Self-Assembly technique (EISA) was prepared. In this study, in order to employ the best coatings in anode electrode of dye-sensitized solar cell, different conditions of making this film, the effective parameters in final structure, and various methods of coating were analyzed. After optimizing the conditions of film creating, images of field emission scanning electron microscope (FESEM) proved the formation of a layer of mesoporous structure which thickness after three times of coating is about 1.5 micrometers. In order to increase the energy conversion efficiency of solar cells, a new formulation for...