Loading...
Search for: atomizers
0.009 seconds
Total 643 records

    PDA and neural network investigation of swirl spray interaction phenomena

    , Article Particle and Particle Systems Characterization ; Volume 22, Issue 3 , 2005 , Pages 192-206 ; 09340866 (ISSN) Soltani, M. R ; Ghorbanian, K ; Ashjaee, M ; Morad, M. R ; Sharif University of Technology
    2005
    Abstract
    Experiments are performed to investigate the atomization characteristics of mixed-interaction regions of sprays of two swirl injectors installed side by side. Both droplet size and velocity distributions on a plane perpendicular to the axes of the injectors are measured using a PDA system. As a result of the interaction phenomenon, a region of secondary atomization is identified that differs significantly from the hollow region spray of a single swirl injector. A neural network algorithm is used to reconstruct the entire spray field for both droplet size and velocity distribution in extrapolation regimes for injector spacing as well as three dimen sional spatial coordinates. Excellent... 

    Bending stiffness of a double-layered graphene sheet using a geometrically-based analytical approach

    , Article 4th ASME Integrated Nanosystems Conference: Design, Synthesis, and Applications, Berkeley, CA, 14 September 2005 through 16 September 2005 ; 2005 , Pages 85-86 ; 0791842088 (ISBN); 9780791842089 (ISBN) Behfar, K ; Naghdabadi, R ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    In this article, the bending stiffness of a double-layered graphene sheet is investigated using a geometrically-based analytical approach. The analysis is based on the van der Waals interactions of atoms belonging to two neighboring sheets. The inter-atomic spacing between the adjacent layers is geometrically determined when the sheet is applied by a couple of moments in the opposite sides. The bending potential energy is obtained by summing up the potentials at discrete hexagons over the length and width of the sheet. It is observed that the bending stiffness of a double-layered graphene sheet does not depend on the length of the sheet and be a material property for the associated sheet.... 

    What roles do boron substitutions play in structural, tautomeric, base pairing and electronic properties of uracil? NBO & AIM analysis

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 787-796 ; 08943230 (ISSN) AliakbarTehrani, Z ; Abedin, A ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The synthesis of modified versions of deoxyribonucleic acid is an area that is receiving much attention. The replacement of the nitrogen atom on the nucleobases with boron atom has provided insight into deoxyribonucleic acid and ribonucleic acid stability, recognition, and replication at the atomic level. In the present research, we investigated a detailed density functional theory study of the structural, tautomeric, base-pairing ability, bond dissociation energy, and electronic properties of two boron analogues (i.e., boron substitutions at 4-position and 5-position of uracil) of uracil nucleobase. The effects of these modifications on theirs acid-base properties have been considered. Our... 

    Control of chaos in atomic force microscopes using delayed feedback based on entropy minimization

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 3 , 2009 , Pages 637-644 ; 10075704 (ISSN) Salarieh, H ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    Active chaos control of a tapping mode atomic force microscope (AFM) model via delayed feedback method is presented. The feedback gain is obtained and adapted according to a minimum entropy (ME) algorithm. In this method, stabilizing an unstable fixed point of the system Poincare map is achieved by minimizing the entropy of points distribution on the Poincare section. Simulation results show the feasibility of the proposed method in applying the delayed feedback technique for chaos control of an AFM system. © 2007 Elsevier B.V. All rights reserved  

    Explanation of atomic displacement around lattice vacancies in diamond based on electron delocalization

    , Article European Physical Journal B ; Volume 65, Issue 2 , 2008 , Pages 219-223 ; 14346028 (ISSN) Heidari Saani, M ; Hashemi, H ; Ranjbar, A ; Vesaghi, M. A ; Shafiekhani, A ; Sharif University of Technology
    2008
    Abstract
    The relationship between unpaired electron delocalization and nearest-neighbor atomic relaxations in the vacancies of diamond has been determined in order to understand the microscopic reason behind the neighboring atomic relaxation. The Density Functional Theory (DFT) cluster method is applied to calculate the single-electron wavefunction of the vacancy in different charge states. Depending on the charge and spin state of the vacancies, at outward relaxations, 84-90% of the unpaired electron densities are localized on the first neighboring atoms. The calculated spin localizations on the first neighboring atoms in the ground state of the negatively charged vacancy and in the spin quintet... 

    Controlling the optical bistability via quantum interference in a four-level N-type atomic system

    , Article Journal of Luminescence ; Volume 131, Issue 8 , August , 2011 , Pages 1682-1686 ; 00222313 (ISSN) Sahrai, M ; Asadpour, S. H ; Mahrami, H ; Sadighi Bonabi, R ; Sharif University of Technology
    2011
    Abstract
    We investigate the optical bistability (OB) and optical multi-stability (OM) in a four-level N-type atomic system. The effect of spontaneously generated coherence (SGC) on OB and OM is then discussed. It is found that SGC makes the medium phase dependent, so the optical bistability and multi-stability threshold can be controlled via relative phase between applied fields. We realize that the frequency detuning of probe and coupling fields with the corresponding atomic transition plays an important role in creation OB and OM. Moreover, the effect of laser coupling fields and an incoherent pumping field on reduction of OB and OM threshold is then discussed  

    Simulation of vacancy diffusion in a silver nanocluster

    , Article Chemical Physics Letters ; Volume 498, Issue 4-6 , 2010 , Pages 312-316 ; 00092614 (ISSN) Taherkhani, F ; Negreiros, F. R ; Parsafar, G ; Fortunelli, A ; Sharif University of Technology
    Abstract
    The formation and diffusion of a vacancy in a silver nanocluster are studied via a combination of first-principles and statistical mechanics simulations. A 38-atom truncated-octahedral (TO) arrangement and its homologue with 37 Ag atoms and one vacancy are considered, and density-functional calculations are performed to derive the energies of the local minima and the energy barriers connecting them. These data are then used as an input for a study of the system dynamics via a kinetic Monte Carlo algorithm, evaluating site occupancies, diffusion coefficient and equilibration time. It is found that vacancy formation and diffusion represents a viable path for atom-atom exchange in these... 

    Introducing an effective method for extending the high harmonic spectrum plateau from gas targets

    , Article Journal of Physics B: Atomic, Molecular and Optical Physics ; Volume 54, Issue 4 , February , 2021 ; 09534075 (ISSN) Khodabandeh, Z ; Monfared, M ; Majles Ara, M. H ; Sadighi Bonabi, R ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    An effective semi-classical method is introduced for controlling the high-order harmonic generation process and extending the cutoff frequency. This method is capable of defining the proper specification of the driving laser for maximizing the cutoff frequency. This method is evaluated by examining the high harmonic spectrum from the hydrogen atom and the fluorine (F2) molecule irradiated by single-, two-, and three-color laser fields. This study is done using the time-dependent density functional theory in a three-dimensional space. The results show that the single-, two-, and three-color laser pulses tuned by proper specifications could extend the cutoff frequency by up to 85%, 176%, and... 

    A continuum–atomistic multi-scale analysis of temperature field problems and its application in phononic nano-structures

    , Article Finite Elements in Analysis and Design ; Volume 198 , 2022 ; 0168874X (ISSN) Yasbolaghi, R ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, a novel coupling technique is developed in continuum–atomistic multi-scale analysis of temperature field problems. In this manner, a new thermostat is introduced based on the single-atom sub-system, where its capability to control the temperature and produce the canonical ensemble is investigated. Moreover, the performance of proposed thermostat is verified by comparing the distribution of velocities to the Maxwell-Boltzmann distribution. The single-atom sub-system thermostat is then incorporated into the concurrent multi-scale model to relate the temperature field between the continuum and atomistic domains with complex lattice thermal fields. In order to illustrate the... 

    Characterization of polymeric membranes for membrane distillation using atomic force microscopy

    , Article Desalination and Water Treatment ; Volume 51, Issue 31-33 , 2013 , Pages 6003-6008 ; 19443994 (ISSN) Shirazi, M. M ; Bastani, D ; Kargari, A ; Tabatabaei, M ; Sharif University of Technology
    Taylor and Francis Inc  2013
    Abstract
    As membrane distillation (MD) is an under-developed separation process, specific membranes for MD applications are not yet commercially available. Therefore, microporous polymeric membranes made of hydrophobic materials fabricated for microfiltration purposes are usually used for MD applications. Characterization of such kind of membranes is important in order to achieve a better in-depth understanding of their performance and to fabricate specific membranes for MD process. One of the emerging characterization methods is atomic force microscopy (AFM) analysis. AFM is a newly developed high-resolution method that is useful for studying the surface topography of various types of membranes, and... 

    Parametric dictionary learning using steepest descent

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 14 March 2010 through 19 March 2010 ; March , 2010 , Pages 1978-1981 ; 15206149 (ISSN) ; 9781424442966 (ISBN) Ataee, M ; Zayyani, H ; Babaie Zadeh, M ; Jutten, C ; Sharif University of Technology
    2010
    Abstract
    In this paper, we suggest to use a steepest descent algorithm for learning a parametric dictionary in which the structure or atom functions are known in advance. The structure of the atoms allows us to find a steepest descent direction of parameters instead of the steepest descent direction of the dictionary itself. We also use a thresholded version of Smoothed- ℓ0 (SL0) algorithm for sparse representation step in our proposed method. Our simulation results show that using atom structure similar to the Gabor functions and learning the parameters of these Gabor-like atoms yield better representations of our noisy speech signal than non parametric dictionary learning methods like K-SVD, in... 

    Efficient detection and validation of atomicity violations in concurrent programs

    , Article Journal of Systems and Software ; Volume 137 , 2018 , Pages 618-635 ; 01641212 (ISSN) Eslamimehr, M ; Lesani, M ; Edwards, G ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Atomicity violations are a major source of bugs in concurrent programs. Empirical studies have shown that the majority of atomicity violations are instances of the three-access pattern, where two accesses to a shared variable by a thread are interleaved by an access to the same variable by another thread. This article describes two advancements in atomicity violation detection. First, we describe a new technique that directs the execution of a dynamic analysis tool towards three-access pattern (TAP) instances. The directed search is based on constraint solving and concolic execution. We implemented this technique in a tool called AtomChase. Using 27 benchmarks comprising 5.4 million lines of... 

    Coarse-graining models for molecular dynamics simulations of FCC metals

    , Article Journal of Theoretical and Applied Mechanics (Poland) ; Volume 56, Issue 3 , 2018 , Pages 601-614 ; 14292955 (ISSN) Delafrouz, P ; Nejat Pishkenari, H ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2018
    Abstract
    In this paper, four coarse-graining (CG) models are proposed to accelerate molecular dynamics simulations of FCC metals. To this aim, at first, a proper map between beads of the CG models and atoms of the all-atom (AA) system is assigned, afterwards mass of the beads and the parameters of the CG models are determined in a manner that the CG models and the original all-atom model have the same physical properties. To evaluate and compare precision of these four CG models, different static and dynamic simulations are conducted. The results show that these CG models are at least 4 times faster than the AA model, while their errors are less than 1 percent. © 2018 Polish Society of Theoretical... 

    Crystal structure of 3-cyano-4-(4-chlorophenyl)-5,6-dimethyl-2(1H)- pyridone, C14H11ClN2O

    , Article Zeitschrift fur Kristallographie - New Crystal Structures ; Volume 222, Issue 1 , February , 2007 , Pages 23-26 ; 14337266 (ISSN) Balalaie, S ; Hashemi, M. M ; Khezri, H ; Rominger, F ; Sharif University of Technology
    2007
    Abstract
    C14H11ClN2O, triclinic P1̄ (no. 2), a = 9.380(2) Å, b = 17.238(4) Å, c = 17.735(5) A&ring, α = 118.456(4)°, β = 98.935(5)°, γ = 92.811(5)°, V = 2465.5 Å3, Z = 8, Rgt(F) = 0.104, wRref(F 2) = 0.205, T = 200 K. © by Oldenbourg Wissenschaftsverlag  

    A survey of hydrogen bonding in imidazole and its 4-nitro derivative by ab initio and DFT calculations of chemical shielding

    , Article Chemical Physics Letters ; Volume 431, Issue 4-6 , 2006 , Pages 421-427 ; 00092614 (ISSN) Tafazzoli, M ; Amini, S. K ; Sharif University of Technology
    2006
    Abstract
    Using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods at gauge invariant atomic orbital (GIAO) condition, chemical shielding of 13C and 15N nuclei of imidazole and its 4-nitro derivative at different temperatures were calculated. Since we have used the realized structures determined by X-ray and neutron diffraction methods, accuracy of calculated results is improved. By partially optimization of structures of 4-nitroimidazole, determined by X-ray crystallography, the obtained results of these structures are also better than nonoptimized structures. Additionally, we have obtained an optimized geometry for hydrogen bond in structures mentioned above. © 2006 Elsevier... 

    Rydberg noisy dressing and applications in making soliton molecules and droplet quasicrystals

    , Article Physical Review Research ; Volume 3, Issue 3 , 2021 ; 26431564 (ISSN) Khazali, M ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    The current advances in the field of ultracold atoms and atomic traps recall new controllable long-range interactions. These interactions are expected to extend the range of realizable quantum algorithms as well as provide new control mechanisms for the new types of quantum matters. This Letter presents special interatomic interactions between Rydberg-dressed atoms by manipulating the lasers' linewidth. The proposed interaction features a hybrid spatial profile containing plateaus and Gaussian peaks. Combined with dynamic control over the sign and strength of individual interaction elements, the Rydberg noisy-dressing (RnD) scheme provides a valuable interaction toolbox for quantum... 

    Reconsideration of Bohmian Trajectories in Hydrogen Atom and its Possible Extension to Macro-systems

    , M.Sc. Thesis Sharif University of Technology Soltanmanesh, Ali (Author) ; Shafiee, Afshin (Supervisor)
    Abstract
    Bohm theory is an alternative for standard quantum mechanics which, provides a deterministic description for physical microsystems. In this theory every physical system, describes as a quantum particle which guided by a correspondiente wave. In stationary states every wave-particle, depends on its initial conditions, is at rest in different points. As an example in hydrogen atom, stationary states means electron, with constant radius and polar angle, has a circular motion in planes which is parallel with xy plane. In this thesis the stationary trajectories of hydrogen atom has been reconsidered and new trajectories are sketched. Also by extension the discussion to the macrosystems, we study... 

    Dynamic modeling and sensitivity analysis of atomic force microscope pushing force in nanoparticle manipulation on a rough substrate [electronic resource]

    , Article Journal of Advanced Science, Engineering and Medicine ; 2013, Vol. 5, pp. 1-10 Babahosseini, H. (Hesam) ; Mahboobi, Seyed Hanif ; Meghdari, Ali ; Sharif University of Technology
    Abstract
    An Atomic Force Microscope (AFM) is a capable tool to manipulate nanoparticles by exerting pushing force on the nanoparticles located on the substrate. In reality, the substrate cannot be considered as a smooth surface particularly at the nanoscale. Hence, the particle may encounter a step on the substrate during a manipulation. In this study, dynamics of the nanoparticle on a stepped substrate and critical pushing force in the manipulation are investigated. There are two possible dynamic modes that may happen in the manipulation on the stepped substrate. In one mode, the nanoparticle may slide on the step edge and then climb up to the step which is a desired mode. Another possible mode is... 

    Highly efficient ring opening reactions of epoxides with deactivated aromatic amines catalyzed by heteropoly acids in water

    , Article Tetrahedron ; 2007, Volume 63, Issue 4, Pages 888–891 Azizi, N. (Najmodin) ; Saidi, M. R ; Sharif University of Technology
    Abstract
    Heteropoly acid was found to be an effective and efficient catalyst for the ring opening reaction of epoxides with various aromatic amines to produce the corresponding β-amino alcohols in moderate to excellent yields in water. This method provides a new and efficient protocol in terms of mild reaction conditions, clean reaction profiles, small quantity of catalyst, and simple work-up procedure  

    The intramolecular cation-π interaction of some aryl amines and its drastic influence on the basicity of them: AIM and NBO analysis

    , Article Computational and Theoretical Chemistry ; Vol. 1036 , May , 2014 , pp. 51-60 ; ISSN: 2210271X Kheirjou, S ; Fattahi, A ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    In this study, drastic influence of the intramolecular cation-π interaction on the basicity of selected amines has been considered. The optimized minimum energy geometries of different studied amines and their protonated structures were determined by using DFT calculations at the B3LYP/6-311++G(d,p) level of theory. Geometry optimizations indicate that the most stable structures of protonated amines are stabilized by intramolecular cation-π interaction. The proton affinity (PA) of selected amines is controlled by the strength of intramolecular cation-π interaction of ammonium with aromatic ring. These cation-π interactions strongly influence the basicity of amines. Natural bond orbital (NBO)...