Loading...
Search for: beams-and-girders
0.016 seconds
Total 213 records

    Live load distribution factor for tank loading on slab-girder bridges

    , Article KSCE Journal of Civil Engineering ; Volume 23, Issue 8 , 2019 , Pages 3420-3430 ; 12267988 (ISSN) Miranbeigi, B ; Maleki, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The aim of this research is to obtain the bending moment and shear live load distribution factors (LLDFs) for interior girders of simply supported slab-girder bridges subjected to continuous loading, such as military tanks. The effective parameters considered in calculating the live load distribution factor were: Girders’ number and spacing, span length, slab thickness and the longitudinal to transverse ratio of deck stiffness. Over fifty 3D finite element models were created based on the existing information of bridges in the USA. An equation was obtained for the distribution factor and its validity was assessed against the numerical results. The proposed equation was compared with the... 

    Nonlinear finite element analysis and parametric study of executable RCS connections

    , Article Archives of Civil and Mechanical Engineering ; Volume 22, Issue 4 , 2022 ; 16449665 (ISSN) Bakhtiari Doost, R ; Sadraie, H ; Khaloo, A ; Badarloo, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    This paper compares the results of a nonlinear finite element analysis (FEA) of an internal hybrid steel beam to RC column connections with those of the experiment on a half-scale. This study used extended face bearing plates (EFBP) embedded in the panel zone (PZ) to make prefabricated RC column to steel beam connections (PRCS). Steel beam flanges were made to be stronger than scaled sections to transfer more force to the PZ. Nonlinear FEA was performed with ABAQUS software to evaluate the connections under unidirectional loading. Failure mode, connection stiffness, and PZ shear strength determined by nonlinear FEA matched well with the experimental findings. PRCS1 model was used to evaluate... 

    Seismic reliability analysis of steel moment-resisting frames retrofitted by vertical link elements using combined series–parallel system approach

    , Article Bulletin of Earthquake Engineering ; 24 November , 2020 Mohsenian, V ; Hajirasouliha, I ; Filizadeh, R ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    The eccentric bracing system equipped with vertical links is capable of providing high levels of stiffness, strength and ductility, and therefore, can be efficiently used for seismic retrofit of existing structures. This study aims to investigate the seismic reliability of steel moment-resisting frames retrofitted by this system using a novel combined series–parallel system approach. The seismic response of 4, 8 and 12-storey steel moment-resisting frames (MRFs) are evaluated under a set of design basis earthquakes (DBE) before and after retrofitting intervention. Adopting an engineering demand parameter approach (EDP-Based) for reliability assessment and development of analytical models for... 

    Seismic reliability analysis of steel moment-resisting frames retrofitted by vertical link elements using combined series–parallel system approach

    , Article Bulletin of Earthquake Engineering ; Volume 19, Issue 2 , 2021 , Pages 831-862 ; 1570761X (ISSN) Mohsenian, V ; Hajirasouliha, I ; Filizadeh, R ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    The eccentric bracing system equipped with vertical links is capable of providing high levels of stiffness, strength and ductility, and therefore, can be efficiently used for seismic retrofit of existing structures. This study aims to investigate the seismic reliability of steel moment-resisting frames retrofitted by this system using a novel combined series–parallel system approach. The seismic response of 4, 8 and 12-storey steel moment-resisting frames (MRFs) are evaluated under a set of design basis earthquakes (DBE) before and after retrofitting intervention. Adopting an engineering demand parameter approach (EDP-Based) for reliability assessment and development of analytical models for... 

    Effects of support conditions and arrangement of prestressed rocking columns on the displacement of concrete frames under dynamic loads

    , Article Bulletin of Earthquake Engineering ; Volume 20, Issue 8 , 2022 , Pages 4175-4212 ; 1570761X (ISSN) Khodabakhshi, N ; Khaloo, A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this paper, the effects of rocking and fixed base prestressed columns and conventional reinforced concrete columns on the response of frames are investigated. Also, the influence of some selected rocking base prestressed columns on the response of the concrete frame was studied. Three types of a concrete frame with conventional Reinforced Concrete columns, rocking, and fixed base prestressed columns were modeled using the finite element method in Opensees software. The details of the simulation of the rocking and fixed base columns in Opensees are described precisely. The results obtained from the models were compared with those of the literature to evaluate the validity of the results.... 

    Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions

    , Article Journal of Nondestructive Evaluation ; Volume 37, Issue 1 , March , 2018 ; 01959298 (ISSN) Saeedifar, M ; Ahmadi Najafabadi, M ; Mohammadi, K ; Fotouhi, M ; Hosseini Toudeshky, H ; Mohammadi, R ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    The aim of this study was to investigate the applicability of acoustic emission (AE) technique to evaluate delamination crack in glass/epoxy composite laminates under quasi-static and fatigue loading. To this aim, double cantilever beam specimens were subjected to mode I quasi-static and fatigue loading conditions and the generated AE signals were recorded during the tests. By analyzing the mechanical and AE results, an analytical correlation between the AE energy with the released strain energy and the crack growth was established. It was found that there is a 3rd degree polynomial correlation between the crack growth and the cumulative AE energy. Using this correlation the delamination... 

    Analytical study of three-dimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory

    , Article Meccanica ; Volume 51, Issue 6 , 2016 , Pages 1435-1444 ; 00256455 (ISSN) Hashemi, M ; Asghari, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    In this work, some vibrational response parameters of strain gradient based micro-spinning Rayleigh beams with mass eccentricity distribution are investigated within infinitesimal deformation conditions. Governing equations of motion are derived utilizing the Hamilton’s principle. The gyroscopic effects and rotary inertia are both included in the formulation. By applying the Galerkin method, analytical expressions for natural frequencies of the micro beam in forward and backward whirl motions are obtained. In addition, an expression for the vibrational amplitude of the micro-beam due to mass eccentricity distribution is determined. Some numerical results are presented to study the effect of... 

    The couple stress-based nonlinear coupled three-dimensional vibration analysis of microspinning Rayleigh beams

    , Article Nonlinear Dynamics ; Volume 87, Issue 2 , 2017 , Pages 1315-1334 ; 0924090X (ISSN) Asghari, M ; Hashemi, M ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The nonlinear coupled three-dimensional vibrations of microspinning Rayleigh beams are analytically studied utilizing the modified couple stress theory to take into account the small-scale effects. The considered nonlinearity is of geometrical type due to the mid-plane stretching. The rotary inertia and gyroscopic effects are both included in the formulation. Governing equations of motion are derived with the aid of the Hamilton Principle and then transformed into complex form. Then, the Galerkin and multiple scales methods are utilized to solve the nonlinear partial differential equation. Approximate analytical expressions for nonlinear natural frequencies of the spinning beams in forward... 

    Analytical investigation of composite sandwich beams filled with shape memory polymer corrugated core

    , Article Meccanica ; Volume 54, Issue 10 , 2019 , Pages 1647-1661 ; 00256455 (ISSN) Akbari Azar, S ; Baghani, M ; Zakerzadeh, M. R ; Shahsavari, H ; Sohrabpour, S ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Shape memory polymers (SMPs) are a class of smart materials which can recover their shape even after many shape changes in application of an external stimulus. In this paper, flexural behavior of a composite beam, constructed of a corrugated part filled with SMPs, is studied. This composite beam is applicable in sensor and actuator applications. Since the corrugated profiles display higher stiffness-to-mass ratio in the transverse to the corrugation direction, the beams with a corrugated part along the transverse direction are stiffer than ones with a corrugated part along the length. Employing a developed constitutive model for SMPs and the Euler–Bernoulli beam theory, the behavior of the... 

    Free vibration of joined cylindrical–hemispherical FGM shells

    , Article Archive of Applied Mechanics ; Volume 90, Issue 10 , 2020 , Pages 2185-2199 Bagheri, H ; Kiani, Y ; Bagheri, N ; Eslami, M. R ; Sharif University of Technology
    Springer  2020
    Abstract
    Free vibration response of a joined shell system including cylindrical and spherical shells is analyzed in this research. It is assumed that the system of joined shell is made from a functionally graded material (FGM). Properties of the shells are assumed to be graded through the thickness. Both shells are unified in thickness. To capture the effects of through-the-thickness shear deformations and rotary inertias, first-order shear deformation theory of shells is used. The Donnell type of kinematic assumptions is adopted to establish the general equations of motion and the associated boundary and continuity conditions with the aid of Hamilton’s principle. The resulting system of equations is... 

    Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force

    , Article Acta Mechanica ; Volume 231, Issue 9 , 2020 , Pages 3715-3727 Rokn Abadi, M ; Yousefi, M ; Haddadpour, H ; Sadeghmanesh, M ; Sharif University of Technology
    Springer  2020
    Abstract
    In the present study, the effect of using magnetorheological elastomer materials and a magnetic field on the dynamic stability of a sandwich beam under a follower force has been investigated for various boundary conditions. The considered sandwich beam consists of a magnetorheological elastomer core constrained by elastic layers. The structural governing equations are derived using Hamilton’s principle and solved by the finite element method. The validity of the result is examined by comparison with those in the literature. The effects of variation in the parameters such as magnetic field intensity and the thickness of the layers on the stability of the sandwich beam are studied. Finally,... 

    Effect of temperature and magnetoelastic loads on the free vibration of a sandwich beam with magnetorheological core and functionally graded material constraining layer

    , Article Acta Mechanica ; Volume 233, Issue 11 , 2022 , Pages 4939-4959 ; 00015970 (ISSN) Mirzavand Borojeni, B ; Shams, S ; Kazemi, M. R ; Rokn Abadi, M ; Sharif University of Technology
    Springer  2022
    Abstract
    In this paper, we investigate the effects of temperature and magnetoelastic load, on the free vibration of an elastomer sandwich beam with magnetorheological (MR) core and functionally graded material (FGM) constraining lamina under high temperature environment. This sandwich beam is named FGMR beam in this paper. The material properties of the functionally graded material layers are assumed to be temperature-dependent and vary continuously through-the-thickness according to a simple power-law distribution in terms of the volume fractions of the constituents. Also, it is assumed that the beam may be clamped, hinged, or free at its ends and is subjected to one-dimensional steady-state heat... 

    Free vibration analysis of functionally graded stiffened micro-cylinder based on the modified couple stress theory

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2598-2615 ; 10263098 (ISSN) Jabbarian, S ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    In this paper, free vibration of the micro-cylinder made by functionally graded material stiffened in circumferential direction was investigated based on modified couple stress and first-order shear deformation theories. Modified Couple Stress Theory (MCST) was used to catch size effects in micro scales. By using first-order shear deformation theory and Hamilton's principle, the general equations of motion and corresponding boundary conditions were derived. Free vibration of the structure was investigated by implementing simply-supported boundary condition as a common case. The effects of different parameters, such as dimensionless length scale parameter, distribution of FGM properties,... 

    Evaluation of PR steel frame connection with torsional plate and its optimal placement

    , Article Scientia Iranica ; Volume 25, Issue 3A , 2018 , Pages 1025-1038 ; 10263098 (ISSN) Moghadam, A ; Estekanchi, H.E ; Yekrangnia, M ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Characteristics of connections in steel moment-resisting frames are of utmost importance in determining the seismic performance of these structural systems. The results of several previous experimental studies have indicated that Partially Restrained (PR) connections possess excellent properties, which make them a reliable substitution for Fully Restrained (FR) connections. These properties include needing less base shear, being more economic, and, in many cases, being able to absorb more energy. In this study, the behavior of two proposed PR connections with torsional plate is studied through finite element simulations. The results of the numerical studies regarding initial stiffness and... 

    Effect of creep on high-order shear deformable beams

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2187-2202 ; 10263098 (ISSN) Ghabdian, M ; Beheshti Aval, S. B ; Vafai, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    A powerful and now theoretical approach is used to obtain an expression for the effect of creep on reinforced concrete shear deform able beams. First, a method is proposed for Ruler-Bernoulli beam to analyze the long-term behavior of concrete beams based on linear strain theory. Second, a formulation has been developed to analyze the strain distribution in shear deformablo concrete beams. Finally, three numerical examples are included in order to compare well-known codes with the proposed method. The comparison of the proposed method, FEM, codes, and experimental works demonstrates that the proposed analytical procedure can effectively simulate creep behavior of reinforced concrete beams.... 

    Effect of creep on high-order shear deformable beams

    , Article Scientia Iranica ; Volume 26, Issue 4A , 2019 , Pages 2187-2202 ; 10263098 (ISSN) Ghabdian, M ; Beheshti Aval, S. B ; Vafai, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    A powerful and now theoretical approach is used to obtain an expression for the effect of creep on reinforced concrete shear deform able beams. First, a method is proposed for Ruler-Bernoulli beam to analyze the long-term behavior of concrete beams based on linear strain theory. Second, a formulation has been developed to analyze the strain distribution in shear deformablo concrete beams. Finally, three numerical examples are included in order to compare well-known codes with the proposed method. The comparison of the proposed method, FEM, codes, and experimental works demonstrates that the proposed analytical procedure can effectively simulate creep behavior of reinforced concrete beams.... 

    Dynamic analysis of generally laminated composite beam with a delamination based on a higher-order shear deformable theory

    , Article Journal of Composite Materials ; Volume 49, Issue 2 , 2015 , Pages 141-162 ; 00219983 (ISSN) Jafari Talookolaei, R. A ; Abedi, M ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this study, the dynamic response of the laminated composite beam with arbitrary lay-ups has been investigated within the framework of the third-order shear deformation theory using the finite element method. A new three-nodded finite element compliant with the theory is introduced next. To deal with the dynamic contact between the delaminated segments, unilateral contact constraints are employed in conjunction with Lagrange multiplier method. Furthermore, the Poisson's effect is incorporated in the formulation of the beam constitutive equation. Also, the higher-order inertia effects and material couplings (flexure-tensile, flexure-twist and tensile-twist couplings) are considered in the... 

    Torsional vibration analysis of a rotating tapered sandwich beam with magnetorheological elastomer core

    , Article Journal of Intelligent Material Systems and Structures ; Volume 29, Issue 11 , 2018 , Pages 2406-2423 ; 1045389X (ISSN) Bornassi, S ; Navazi, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    In this study, the torsional vibration analysis of a rotating tapered sandwich beam with a magnetorheological elastomer core has been investigated. The magnetorheological elastomer material is used as a constrained damping layer embedded between two elastic constraining skins in order to improve the vibrational behavior of the sandwich beam. The three layers of the sandwich beam have rectangular cross-sections with symmetric arrangement. The problem formulation is set up based on the torsional theory of rectangular laminated plates. The assumed modes method and the Lagrange equations are used to derive the governing equations of motion of the system. The validity of the presented formulation... 

    Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

    , Article Journal of Intelligent Material Systems and Structures ; 2020 Sayyaadi, H ; Mehrabi, M ; Hoviattalab, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at... 

    Modeling of magnetic shape memory alloy plates for pressure sensor application

    , Article Journal of Intelligent Material Systems and Structures ; 2020 Sayyaadi, H ; Naderi, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    This article investigates the basis for pressure sensor application based on the magnetic shape memory effect in membranes. Von Karmans nonlinear terms are considered in strain–displacement relationships of thin films, and a new method is presented for solution of large deflections of thin films with arbitrary boundary condition. In this study, the equations of motion of magnetic shape memory alloys are extended. In pressurized membranes, the complex distribution of mechanical stress can cause the martensitic reorientation, which is the underlying mechanism for sensing applications in magnetic shape memory alloys. To examine the obtained model, the governing equations of magnetic shape...