Loading...
Search for: biological-model
0.012 seconds
Total 110 records

    Evaluation of various energy windows at different radionuclides for scatter and attenuation correction in nuclear medicine

    , Article Annals of Nuclear Medicine ; Volume 29, Issue 4 , 2015 , Pages 375-383 ; 09147187 (ISSN) Asgari, A ; Ashoor, M ; Sohrabpour, M ; Shokrani, P ; Rezaei, A ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Objective: Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. Methods: The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with... 

    Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding

    , Article IEEE Transactions on Medical Imaging ; Volume 34, Issue 2 , September , 2015 , Pages 357-365 ; 02780062 (ISSN) Azghani, M ; Kosmas, P ; Marvasti, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    We propose a new image recovery method to improve the resolution in microwave imaging applications. Scattered field data obtained from a simplified breast model with closely located targets is used to formulate an electromagnetic inverse scattering problem, which is then solved using the Distorted Born Iterative Method (DBIM). At each iteration of the DBIM method, an underdetermined set of linear equations is solved using our proposed sparse recovery algorithm, IMATCS. Our results demonstrate the ability of the proposed method to recover small targets in cases where traditional DBIM approaches fail. Furthermore, in order to regularize the sparse recovery algorithm, we propose a novel... 

    Effect of body weight on spinal loads in various activities: A personalized biomechanical modeling approach

    , Article Journal of Biomechanics ; Volume 48, Issue 2 , 2015 , Pages 276-282 ; 00219290 (ISSN) Hajihosseinali, M ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Epidemiological studies are divided over the causative role of body weight (BW) in low back pain. Biomechanical modeling is a valuable approach to examine the effect of changes in BW on spinal loads and risk of back pain. Changes in BW have not been properly simulated by previous models as associated alterations in model inputs on the musculature and moment arm of gravity loads have been neglected. A detailed, multi-joint, scalable model of the thoracolumbar spine is used to study the effect of BW (varying at five levels, i.e., 51, 68, 85, 102, and 119kg) on the L5-S1 spinal loads during various static symmetric activities while scaling moment arms and physiological cross-sectional areas of... 

    Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities

    , Article Applied Ergonomics ; Volume 48 , 2015 , Pages 22-32 ; 00036870 (ISSN) Rajaee, M. A ; Arjmand, N ; Shirazi Adl, A ; Plamondon, A ; Schmidt, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Different lifting analysis tools are commonly used to assess spinal loads and risk of injury. Distinct musculoskeletal models with various degrees of accuracy are employed in these tools affecting thus their relative accuracy in practical applications. The present study aims to compare predictions of six tools (HCBCF, LSBM, 3DSSPP, AnyBody, simple polynomial, and regression models) for the L4-L5 and L5-S1 compression and shear loads in twenty-six static activities with and without hand load. Significantly different spinal loads but relatively similar patterns for the compression (R2>0.87) were computed. Regression models and AnyBody predicted intradiscal pressures in closer agreement with... 

    A new model of pressure propagation in human tissue in HIFU application

    , Article Acta Medica Mediterranea ; Volume 31, Issue 7 , 2015 , Pages 1501-1505 ; 03936384 (ISSN) Hajian, S. R ; Abbaspour Tehrani Fard, A ; Pouladian, M ; Hemmasi, G. R ; Sharif University of Technology
    A. CARBONE Editore  2015
    Abstract
    This project is a new pressure model for propagating pressure inside one or several tissues at the time of treatment with high intensity focus ultrasound (HIFU). Pressure's changes are converted to heat's changes in tissue and this is done oscillatory. When the treatment is done in deeper tissues, obtained heat can affect surficial tissues. This pressure effect also can enter surficial tissues. Amount of pressure and heat possible injury can be controlled and reduced through this mechanical modelling. In this model we have used three layers and pressure also is obtained within these three layers and is investigated averagely. Obtained tissue in this mood is kidney tissue and it is tried to... 

    Experimental feasibility study of estimation of the normalized central blood pressure waveform from radial photoplethysmogram

    , Article Journal of Healthcare Engineering ; Volume 6, Issue 1 , 2015 , Pages 121-144 ; 20402295 (ISSN) Zahedi, E ; Sohani, V ; Mohd. Ali, M. A ; Chellappan, K ; Beng, G. K ; Sharif University of Technology
    Multi-Science Publishing Co. Ltd  2015
    Abstract
    The feasibility of a novel system to reliably estimate the normalized central blood pressure (CBPN) from the radial photoplethysmogram (PPG) is investigated. Right-wrist radial blood pressure and left-wrist PPG were simultaneously recorded in five different days. An industry-standard applanation tonometer was employed for recording radial blood pressure. The CBP waveform was amplitude-normalized to determine CBPN. A total of fifteen second-order autoregressive models with exogenous input were investigated using system identification techniques. Among these 15 models, the model producing the lowest coefficient of variation (CV) of the fitness during the five days was... 

    Digital implementation of a biological astrocyte model and its application

    , Article IEEE Transactions on Neural Networks and Learning Systems ; Volume 26, Issue 1 , 2014 , Pages 127-139 ; 2162237X (ISSN) Soleimani, H ; Bavandpour, M ; Ahmadi, A ; Abbott, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    This paper presents a modified astrocyte model that allows a convenient digital implementation. This model is aimed at reproducing relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system. Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte and a biological neuronal network model constructed by connecting two limit-cycle Hopf oscillators to an implementation of the proposed astrocyte model using oscillator-astrocyte interactions with weak coupling. Hardware synthesis, physical implementation on field-programmable gate array, and theoretical analysis confirm... 

    Diagnosis of early Alzheimer's disease based on EEG source localization and a standardized realistic head model

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 17, Issue 6 , 2013 , Pages 1039-1045 ; 21682194 (ISSN) Aghajani, H ; Zahedi, E ; Jalili, M ; Keikhosravi, A ; Vahdat, B. V ; Sharif University of Technology
    2013
    Abstract
    In this paper, distributed electroencephalographic (EEG) sources in the brain have been mapped with the objective of early diagnosis of Alzheimer's disease (AD). To this end, records from a montage of a high-density EEG from 17 early AD patients and 17 matched healthy control subjects were considered. Subjects were in eyes-closed, resting-state condition. Cortical EEG sources were modeled by the standardized low-resolution brain electromagnetic tomography (sLORETA) method. Relative logarithmic power spectral density values were obtained in the four conventional frequency bands (alpha, beta, delta, and theta) and 12 cortical regions. Results show that in the left brain hemisphere, the theta... 

    Protein fibrillation and nanoparticle interactions: Opportunities and challenges

    , Article Nanoscale ; Volume 5, Issue 7 , Jan , 2013 , Pages 2570-2588 ; 20403364 (ISSN) Mahmoudi, M ; Kalhor, H. R ; Laurent, S ; Lynch, I ; Sharif University of Technology
    2013
    Abstract
    Due to their ultra-small size, nanoparticles (NPs) have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. NPs are recognized as promising and powerful tools to fight against the human brain diseases such as multiple sclerosis or Alzheimer's disease. In this review, after an introductory part on the nature of protein fibrillation and the existing approaches for its investigations, the effects of NPs on the fibrillation process have been considered. More specifically, the role of biophysicochemical properties of NPs, which define their affinity for protein monomers, unfolded monomers,... 

    Utility of a nonlinear joint dynamical framework to model a pair of coupled cardiovascular signals

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 17, Issue 4 , 2013 , Pages 881-890 ; 21682194 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2013
    Abstract
    We have recently proposed a correlated model to provide a Gaussian mixture representation of the cardiovascular signals, with promising results in identifying rhythm disturbances. The approach provides a transformation of the data into a set of integrable Gaussians distributed over time. Looking into the model from a new joint modeling perspective, it is capable of assembling a filtered estimation, and can be used to derive temporal information of the waveforms. In this paper, we present a step-by-step derivation of the joint model putting correlation assumptions together to conclude a minimal joint description for a pair of ECG-ABP signals. We then probe novel applications of this model,... 

    Discovering dominant pathways and signal-response relationships in signaling networks through nonparametric approaches

    , Article Genomics ; Volume 102, Issue 4 , October , 2013 , Pages 195-201 ; 08887543 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2013
    Abstract
    A signaling pathway is a sequence of proteins and passenger molecules that transmits information from the cell surface to target molecules. Understanding signal transduction process requires detailed description of the involved pathways. Several methods and tools resolved this problem by incorporating genomic and proteomic data. However, the difficulty of obtaining prior knowledge of complex signaling networks limited the applicability of these tools. In this study, based on the simulation of signal flow in signaling network, we introduce a method for determining dominant pathways and signal response to stimulations. The model uses topology-weighted transit compartment approach and comprises... 

    Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells

    , Article Physical Biology ; Volume 10, Issue 4 , 2013 ; 14783967 (ISSN) Mas, J ; Richardson, A. C ; Reihani, S. N. S ; Oddershede, L. B ; Berg Sorensen, K ; Sharif University of Technology
    2013
    Abstract
    With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measurements that a precise and reliable force calibration of the tweezers is performed. There are well-established calibration protocols in purely viscous environments; however, as the cellular cytoplasm is viscoelastic, it would be incorrect to use a calibration procedure relying on a viscous environment.... 

    A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 6 , 2013 , Pages 672-682 ; 09544119 (ISSN) Nikkhoo, M ; Hsu, Y. C ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The metamodel analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the... 

    A novel distributed model of the heart under normal and congestive heart failure conditions

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 4 , 2013 , Pages 362-372 ; 09544119 (ISSN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    2013
    Abstract
    Conventional models of cardiovascular system frequently lack required detail and focus primarily on the overall relationship between pressure, flow and volume. This study proposes a localized and regional model of the cardiovascular system. It utilizes noninvasive blood flow and pressure seed data and temporal cardiac muscle regional activity to predict the operation of the heart under normal and congestive heart failure conditions. The analysis considers specific regions of the heart, namely, base, mid and apex of left ventricle. The proposed method of parameter estimation for hydraulic electric analogy model is recursive least squares algorithm. Based on simulation results and comparison... 

    Spike phase synchronization in delayed-coupled neural networks: Uniform vs. non-uniform transmission delay

    , Article Chaos ; Volume 23, Issue 1 , 2013 ; 10541500 (ISSN) Jalili, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, we investigated phase synchronization in delayed dynamical networks. Non-identical spiking Hindmarsh-Rose neurons were considered as individual dynamical systems and coupled through a number of network structures such as scale-free, Erdos-Rényi, and modular. The individual neurons were coupled through excitatory chemical synapses with uniform or distributed time delays. The profile of spike phase synchrony was different when the delay was uniform across the edges as compared to the case when it was distributed, i.e., different delays for the edges. When an identical transmission delay was considered, a quasi-periodic pattern was observed in the spike phase synchrony. There... 

    Validation of the revised stressful life event questionnaire using a hybrid model of genetic algorithm and artificial neural networks

    , Article Computational and Mathematical Methods in Medicine ; Volume 2013 , 2013 ; 1748670X (ISSN) Sali, R ; Roohafza, H ; Sadeghi, M ; Andalib, E ; Shavandi, H ; Sarrafzadegan, N ; Sharif University of Technology
    2013
    Abstract
    Objectives. Stressors have a serious role in precipitating mental and somatic disorders and are an interesting subject for many clinical and community-based studies. Hence, the proper and accurate measurement of them is very important. We revised the stressful life event (SLE) questionnaire by adding weights to the events in order to measure and determine a cut point. Methods. A total of 4569 adults aged between 18 and 85 years completed the SLE questionnaire and the general health questionnaire-12 (GHQ-12). A hybrid model of genetic algorithm (GA) and artificial neural networks (ANNs) was applied to extract the relation between the stressful life events (evaluated by a 6-point Likert scale)... 

    How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 16, Issue 3 , 2013 , Pages 291-301 ; 10255842 (ISSN) Moghadam, M. N ; Aminian, K ; Asghari, M ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are... 

    Tool-tissue force estimation in laparoscopic surgery using geometric features

    , Article Studies in Health Technology and Informatics ; Volume 184 , 2013 , Pages 225-229 ; 09269630 (ISSN) Kohani, M ; Behzadipour, S ; Farahmand, F ; Sharif University of Technology
    IOS Press  2013
    Abstract
    This paper introduces three geometric features, from deformed shape of a soft tissue, which demonstrate good correlation with probing force and maximum local stress. Using FEM simulation, 2D and 3D model of an in vivo porcine liver was built for different probing tasks. Maximum deformation angle, maximum deformation depth and width of displacement constraint of the reconstructed shape of the deformed body were calculated. Two neural networks were trained from these features and the calculated interaction forces. The features are shown to have high potential to provide force estimation either for haptic devices or to assess the damage to the tissue in large deformations of up to 40%  

    Model-based needle control in prostate percutaneous procedures

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 1 , 2013 , Pages 58-71 ; 09544119 (ISSN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    2013
    Abstract
    In percutaneous applications, needle insertion into soft tissue is considered as a challenging procedure, and hence, it has been the subject of many recent studies. This study considers a model-based dynamics equation to evaluate the needle movement through prostate soft tissue. The proposed model estimates the applied force to the needle using the tissue deformation data and finite element model of the tissue. To address the role of mechanical properties of the soft tissue, an inverse dynamics control method based on sliding mode approach is used to demonstrate system performance in the presence of uncertainties. Furthermore, to deal with inaccurate estimation of mechanical parameters of... 

    Effect of microthread design of dental implants on stress and strain patterns: A three-dimensional finite element analysis

    , Article Biomedizinische Technik ; Volume 58, Issue 5 , September , 2013 , Pages 457-467 ; 00135585 (ISSN) Amid, R ; Raoofi, S ; Kadkhodazadeh, M ; Movahhedi, M. R ; Khademi, M ; Sharif University of Technology
    Walter de Gruyter and Co  2013
    Abstract
    The aim of this study was to use finite element analysis (FEA) to assess the influence of microthread design at the implant neck on stress distribution in the surrounding bone. A commercially available implant with 3.5 mm diameter and 10.5 mm length was selected and used as a model. For the purpose of designing the microthread implant model, microthreads were added to the implant neck in a computerized model. A force measuring 100 N was then applied to the entire surface of the abutment in the vertical direction. The results showed that in both models, stress was mainly concentrated at the cortical bone adjacent to the neck of the implant. Maximum stress values in the cortical bone...