Loading...
Search for: biomechanics
0.015 seconds
Total 325 records

    Biomechanical Modeling of Human Eye in Car Airbag Blunt Impacts During Accident: an Empirical Test and Finite Element Study

    , M.Sc. Thesis Sharif University of Technology Shirzadi, Hooman (Author) ; Zohour, Hassan (Supervisor)
    Abstract
    Eye and vision are the most important tools and the perceptual sense of human. This important vital member is one of the most vulnerable organs of human body. For example in the United States 1.9 million eye surgery are being done yearly which include 9 thousand globe rupture and 30 thousand blindness due to impacts on the eye. Eye traumas could have occurred as mechanical, radiation, thermal, chemical, etc. among these, the damages related to the airbag impact which is subset of mechanical damages, take a significant percentage. Presenting a model of human eye in car airbag blunt impacts during accident could be effective for receiving helpful information from damage of the internal parts... 

    Dynamic comparison of segmentary scapulohumeral rhythm between athletes with and without impingement syndrome

    , Article Iranian Journal of Radiology ; Vol. 11, issue. 2 , 2014 Taghizadeh Delkhoush, C ; Maroufi, N ; Ebrahimi Takamjani, I ; Farahmand, F ; Shakourirad, A ; Haghani, H ; Sharif University of Technology
    Abstract
    Background: Patients who have shoulder pain usually have compensatory or contributory deviation of shoulder motion during arm elevation. In the traditional scapulohumeral rhythm, the share of the acromioclavicular (AC) and the sternoclavicular (SC) joint movements and also the role of AC internal rotation angle are unknown. Objectives: The main purpose of this study was to measure and compare the segmentary scapulohumeral rhythm (SSHR) during scapular arm elevation at a steady rotational speed in athletes with and without impingement syndrome. Patients and Methods: Using a speedometer, the maximum speed of arm elevation was measured in 21 men in each of the involved and uninvolved groups.... 

    Optimization of a passenger occupied seat with suspension system exposed to vertical vibrations using genetic algorithms

    , Article Journal of Vibroengineering ; Volume 15, Issue 2 , 2013 , Pages 979-991 ; 13928716 (ISSN) Afkar, A ; Javanshir, I ; Ahmadian, M. T ; Ahmadi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a biomechanical model with seven degrees of freedom as a seated human exposed to vertical vibration. Experimental data is used to find the stiffness and damping parameters of the model. The data includes values of seat to head transmissibility, driving point mechanical impedance and apparent mass. The multi-objective function is used to obtain theoretical results similar to three different experimental cases. The unknown coefficients are calculated by a genetic algorithm. Improved results, in comparison with previous models, are achieved from the presented model. Next, this modified model is assembled on a quarter car and parameters of the cushion and the suspension... 

    Sharif-human movement instrumentation system (SHARIF-HMIS) for daily activities

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012, 20 December 2012 through 21 December 2012 ; 2012 , Pages 143-148 ; 9781467331302 (ISBN) Mokhlespour, M. I ; Zobeiri, O ; Akbari, A ; Milani, Y ; Narimani, R ; Moshiri, B ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    Wearable measuring system has major effects on biomechanics of human movements especially in daily activities in order to monitor and analyze the human movements to achieve the most important kinematics parameters. In the recent decade, inertial sensors were utilized by researchers in order to developing wearable system for instrumentation of human movements. In this study, Sharif-Human Movement Instrumentation System (SHARIF-HMIS) was designed and manufactured. The system consists of inertial measurement units (IMUs), stretchable clothing and data logger. The IMU sensors are installed on the human body. The system can be used at home and also industrial environments. The main features of... 

    Whole cell mechanical property characterization based on mechanical properties of its cytoplasm and bio membrane

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 2 , November , 2012 , Pages 545-551 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Analysis and investigation of the relation between different parts of biological cells such as biomembrane, cytoplasm and nucleus can help to better understand their behaviors and material properties. In this paper, first, the whole elastic properties of mouse oocyte and embryo cells have been computed by inverse finite element and Levenberg-Marquardt optimization algorithm and second, using the derived mechanical properties and the mechanical properties of its bio membrane from the literature, the mechanical properties of its cytoplasm has been characterized. It has been assumed that the cell behavior is as continues, isotropic, nonlinear and homogenous material for modeling. Matching the... 

    Deformation characterization of mouse oocyte cell using inverse finite element and LevenbergâMarquardt optimization algorithm in needle injection experiment

    , Article Proceedings of the ASME Design Engineering Technical Conference, 12 August 2012 through 12 August 2012 ; Volume 2, Issue PARTS A AND B , August , 2012 , Pages 847-852 ; 9780791845011 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    In order to better understand the mechanical properties of biological cells, characterization and investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used to characterize the mechanicalproperties of mouse oocyte cell. It has been assumed that the cell behavior is continues, isotropic, nonlinear and homogenous material. Then, by matching the experimental data with finite element (FE) simulation result and using the LevenbergâMarquardt optimization algorithm, the nonlinear hyperelastic model parameters have been extracted. Experimental data of mouse oocyte captured from literatures. Advantage of the developed model is that it can be used to... 

    Inverse dynamics control of needle in prostate brachytherapy

    , Article 2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings ; 2012 , Pages 510-515 ; 9781467303422 (ISBN) Maghsoudi, A ; Jahed, M ; Sharif University of Technology
    IEEE  2012
    Abstract
    Needle insertion into the soft tissue has been the subject of many studies during the last decade, while needle control has become a crucial training tool, evaluating surgeon's skills in such critical incision. This study considers a model-based dynamics equation for the needle movement through the soft tissue. In the proposed model, the force distribution along the needle shaft is estimated through the use of tissue deformation data and tissue model. A novel algorithm for the needle control simulation is also proposed based on the developed dynamics equation of the needle movement. To point out the role of mechanical properties of the soft tissue, an inverse dynamics control method is used... 

    Dynamic analysis of human ear during sound transmission

    , Article 3rd international Conference on Manufacturing Science and Engineering, ICMSE 2012, Xiamen, 27 March 2012 through 29 March 2012 ; Volume 472-475 , 2012 , Pages 1215-1219 ; 10226680 (ISSN); 9783037853702 (ISBN) Ghafari, A. S ; Zahiri, S ; Fujian University of Technology; Xiamen University; Fuzhou University; Huaqiao University; University of Wollongong ; Sharif University of Technology
    2012
    Abstract
    The aim of the present research is to simulate dynamic behavior of the human auditoria peripherals during sound transmission using the equivalent six-degrees-of-freedom lumped parameter mathematical model. Transmissibility analysis was employed to get a better insight into the sound transmission from tympanic membrane to malleus, incus, stapes, and cochlea. Furthermore, transmissibility from each member to corresponding adjacent member was carried out to functional analysis of the human ear. Simulation study illustrated that the results are in agreement with the experimental results published in the literature, and the proposed model provides more information in the dynamic analysis of... 

    Efficient design of a torque actuator for lower extremity exoskeleton based on muscle function analysis

    , Article 2011 International Conference on Mechatronics and Materials Processing, ICMMP 2011, Guangzhou, 18 November 2011 through 20 November 2011 ; Volume 328-330 , 2011 , Pages 1041-1044 ; 10226680 (ISSN) ; 9783037852385 (ISBN) Safavi, S ; Selk Ghafari, A ; Meghdari, A ; Guangzhou University ; Sharif University of Technology
    2011
    Abstract
    Several lower extremity exoskeletal systems have been developed for augmentation purpose. Common actuators, have important drawbacks such as complexity, and poor torque capacities. The main scope of this research is to propose a series elastic actuator for lower extremity exoskeletal system which was designed based on muscle functional analysis. For this purpose, a biomechanical framework consisting of a musculoskeletal model with ten degrees-of-freedom actuated by eighteen Hill-type musculotendon actuators per leg is utilized to perform the muscle functional analysis for common daily human activities. The simulation study illustrated functional differences between flexor and extensor... 

    Modeling of cell deformation under external force using artificial neural network

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 2 , 2010 , Pages 659-665 ; 9780791844267 (ISBN) Ahmadian, M. T ; Vossoughi, G. R ; Abbasi, A. A ; Raeissi, P ; Sharif University of Technology
    Abstract
    Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection process, deformation and geometry of cell under external point-load is a key element to understand the interaction between cell and needle. In this paper the goal is the prediction of cell membrane deformation under a certain force, and to visually estimate the force of indentation on the membrane from... 

    An ellipsoidal model for studying response of head impacts

    , Article Acta of Bioengineering and Biomechanics ; Volume 12, Issue 1 , 2010 , Pages 47-53 ; 1509409X (ISSN) Heydari, M ; Jani, S ; Sharif University of Technology
    2010
    Abstract
    The objective of this study was to propose a new analytical model for studying response of head impacts. Head is modeled by fluidfilled ellipsoidal shell of inconstant thickness impacted by a solid elastic sphere. Modeling the head as an ellipsoid is more realistic than modeling it as a sphere, the previous model existing in the literature [3]-[8]. In this model, the effect of Hertzian contact stiffness and local shell stiffness are combined to derive explicit equations for impact duration, the peak force transmitted to head, and the head injury criterion. One of the advantages of the model presented is sensitivity to the site of impact. A comparison between the present analytical results... 

    The effect of exertion level on activation patterns and variability of trunk muscles during multidirectional isometric activities in upright posture

    , Article Spine ; Volume 35, Issue 11 , May , 2010 , Pages E443-E451 ; 03622436 (ISSN) Talebian, S ; Mousavi, S. J ; Olyaei, G. R ; Sanjari, M. A ; Parnianpour, M ; Sharif University of Technology
    2010
    Abstract
    STUDY DESIGN.: An experimental design to investigate activation patterns of trunk muscles during multidirectional exertions. OBJECTIVES.: To evaluate trunk muscle activation patterns in varying directions and moment magnitudes during an isometric task, and to investigate the effects of angle and level of isometric exertion on the electromyography (EMG) variability of trunk muscles in upright posture. SUMMARY OF BACKGROUND DATA.: Few studies have investigated trunk muscle activation patterns in multidirectional exertions with different moment magnitudes. METHODS.: A total of 12 asymptomatic male subjects were participated in the study. The EMG activity of 10 selected trunk muscles was... 

    Effects of sex, age, body height and body weight on spinal loads: Sensitivity analyses in a subject-specific trunk musculoskeletal model

    , Article Journal of Biomechanics ; Volume 49, Issue 14 , 2016 , Pages 3492-3501 ; 00219290 (ISSN) Ghezelbash, F ; Shirazi Adl, A ; Arjmand, N ; El Ouaaid, Z ; Plamondon, A ; Meakin, J. R ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Subject-specific parameters influence spinal loads and the risk of back disorders but their relative effects are not well understood. The objective of this study is to investigate the effects of changes in age (35–60 years), sex (male, female), body height (BH: 150–190 cm) and body weight (BW: 50–120 kg) on spinal loads in a full-factorial simulation using a personalized (spine kinematics, geometry, musculature and passive properties) kinematics driven musculoskeletal trunk finite element model. Segmental weight distribution (magnitude and location along the trunk) was estimated by a novel technique to accurately represent obesity. Five symmetric sagittal loading conditions were considered,... 

    Mechanical characterization of brain tissue in compression

    , Article ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 21 August 2016 through 24 August 2016 ; Volume 3 , 2016 ; 9780791850138 (ISBN) Shafiee, A ; Ahmadian, M. T ; Hoviat Talab, M ; Computers and Information in Engineering Division; Design Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the United States. The appropriate coefficients for modeling the injury prediction can be evaluated using experimental data. In the present paper, using an experimental setup on bovine brain tissue, unconfined compression tests at quasi-static strain rates of ϵ 0.0004s-1, 0.008s-1 and 0.4s-1 combined with a stress relaxation test under unconfined uniaxial compression with ϵ 0.67s-1 ramp rate are performed. The fitted viscohyperelastic parameters were utilized by using obtained stressstrain curves. The finite element analysis (FEA) is... 

    Biodegradable polyurethane acrylate/HEMA-grafted nanodiamond composites with bone regenerative potential applications: Structure, mechanical properties and biocompatibility

    , Article RSC Advances ; Volume 6, Issue 11 , 2016 , Pages 8743-8755 ; 20462069 (ISSN) Alishiri, M ; Shojaei, A ; Abdekhodaie, M. J ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    The present study demonstrates HEMA-grafted nanodiamond (ND-HEMA)/acrylate-terminated polyurethane-acrylate diluents (APUA) composites as promising materials for bone implant applications. Neat APUA and APUA composites containing ND-HEMA at different loadings up to 2 wt% were prepared by an in situ polymerization method. Morphological analysis demonstrated that ND-HEMAs were actually in the form of tightly bound aggregates which led to formation of big agglomerates at a concentration of 2 wt%. It was also suggested that ND-HEMAs were preferentially localized in the continuous soft domain of APUA; however it interacted by both soft and hard domains. Moreover, ND-HEMAs caused considerable... 

    A model for flexi-bar to evaluate intervertebral disc and muscle forces in exercises

    , Article Medical Engineering and Physics ; Volume 38, Issue 10 , 2016 , Pages 1076-1082 ; 13504533 (ISSN) Abdollahi, M ; Nikkhoo, M ; Ashouri, S ; Asghari, M ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study developed and validated a lumped parameter model for the FLEXI-BAR, a popular training instrument that provides vibration stimulation. The model which can be used in conjunction with musculoskeletal-modeling software for quantitative biomechanical analyses, consists of 3 rigid segments, 2 torsional springs, and 2 torsional dashpots. Two different sets of experiments were conducted to determine the model's key parameters including the stiffness of the springs and the damping ratio of the dashpots. In the first set of experiments, the free vibration of the FLEXI-BAR with an initial displacement at its end was considered, while in the second set, forced oscillations of the bar were... 

    Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models

    , Article Journal of Biomechanics ; Volume 49, Issue 13 , Volume 49, Issue 13 , 2016 , Pages 2946-2952 ; 00219290 (ISSN) Gholipour, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Spinal posture is a crucial input in biomechanical models and an essential factor in ergonomics investigations to evaluate risk of low back injury. In vivo measurement of spinal posture through the common motion capture techniques is limited to equipped laboratories and thus impractical for workplace applications. Posture prediction models are therefore considered indispensable tools. This study aims to investigate the capability of artificial neural networks (ANNs) in predicting the three-dimensional posture of the spine (S1, T12 and T1 orientations) in various activities. Two ANNs were trained and tested using measurements from spinal postures of 40 male subjects by an inertial tracking... 

    Biomechanical analysis of actin cytoskeleton function based on a spring network cell model

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 231, Issue 7 , 2017 , Pages 1308-1323 ; 09544062 (ISSN) Ghaffari, H ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    In this study, a new method for the simulation of the time-dependent behavior of actin cytoskeleton during cell shape change is proposed. For this purpose, a three-dimensional model of endothelial cell consisting of cell membrane, nucleus membrane, and main components of cytoskeleton, namely actin filaments, microtubules, and intermediate filaments is utilized. Actin binding proteins, which play a key role in regulating actin cytoskeleton behavior, are also simulated by using a novel technique. The actin cytoskeleton in this model is more dynamic and adoptable during cell deformation in comparison to previous models. The proposed model is subjected to compressive force between parallel micro... 

    Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach

    , Article Sensors (Switzerland) ; Volume 17, Issue 1 , 2017 ; 14248220 (ISSN) Mokhlespour Esfahani, M. I ; Zobeiri, O ; Moshiri, B ; Narimani, R ; Mehravar, M ; Rashedi, E ; Parnianpour, M ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body‐Worn Sensors (BWS) is designed and developed. TMS can measure three‐dimensional (3D) trunk motions, is lightweight, and is a portable and non‐invasive system. After the recognition of sensor locations, twelve BWSs were printed on stretchable clothing with the purpose of measuring the 3D trunk movements. To integrate BWSs data, a neural network data... 

    Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Naserkhaki, S ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; El Rich, M ; Sharif University of Technology
    Abstract
    Ligaments assist trunk muscles in balancing external moments and providing spinal stability. In absence of the personalized material properties for ligaments, finite element (FE) models use dispersed data from the literature. This study aims to investigate the relative effects of eight different ligament property datasets on FE model responses. Eight L4-L5 models distinct only in ligament properties were constructed and loaded under moment (15. N. m) alone or combined with a compressive follower load (FL). Range of motions (RoM) of the disc-alone model matched well in vitro data. Ligament properties significantly affected only sagittal RoMs (∼3.0-7.1° in flexion and ∼3.8-5.8° in extension at...