Search for: biosensing-techniques
0.005 seconds
Total 26 records

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically... 

    The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology

    , Article Biosensors and Bioelectronics ; Volume 105 , 15 May , 2018 , Pages 58-64 ; 09565663 (ISSN) Shariati, M ; Sharif University of Technology
    Elsevier Ltd  2018
    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50 nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10 µM. The detection limit of... 

    Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine

    , Article Biosensors and Bioelectronics ; Volume 24, Issue 11 , 2009 , Pages 3235-3241 ; 09565663 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Adeli, M ; Amini, M. K ; Sharif University of Technology
    Multi-walled carbon nanotubes (MWCNTs) were immobilised with cobalt nanoparticles and analyzed by transmission electron microscopy. This modification procedure substantially improved colloidal dispersion of the immobilised MWCNTs in water and organic solvents, yielding uniform and stable thin films for modification of the glassy carbon electrode surface. The modified electrode showed an efficient catalytic role for the electrochemical oxidation of thioridazine (TR), leading to remarkable decrease in its oxidation overpotential of approximately 100 mV and enhancement of the kinetics of the electrode reaction, which can be confirmed by increasing in the peak current and sharpness of the peak.... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; Volume 40, Issue 2 , 2021 , Pages 225-246 ; 09349723 (ISSN) Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy...