Loading...
Search for: blood-vessels
0.007 seconds
Total 65 records

    Personalised deposition maps for micro- and nanoparticles targeting an atherosclerotic plaque: attributions to the receptor-mediated adsorption on the inflamed endothelial cells

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 18, Issue 3 , 2019 , Pages 813-828 ; 16177959 (ISSN) Shamloo, A ; Forouzandehmehr, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Endothelial inflammation as a prominent precursor to atherosclerosis elicits a distinct pathological surface expression of particular vascular proteins. To exhibit a site-specific behaviour, micro- and nanoparticles, as carriers of therapeutics or imaging agents, can distinguish and use these proteins as targeted docking sites. Here, a computational patient-specific model capturing the exclusive luminal qualities has been developed to study the transport and adsorption of particles decorated with proper antibodies over an atherosclerotic plaque located in the LAD artery of the patient. Particles, in nano- and micron sizes, have been decorated with Sialyl Lewisx (sLex), P-selectin aptamer... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition

    , Article Computers in Biology and Medicine ; Volume 133 , 2021 ; 00104825 (ISSN) Biglarian, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Atherosclerosis as a common cardiovascular disease is a result of both adverse hemodynamics conditions and monocyte deposition within coronary arteries. It is known that the adhesion of monocytes on the arterial wall and their interaction with the vascular surface are one of the main parameters in the initiation and progression of atherosclerosis. In this work, hemodynamic parameters and monocyte deposition have been investigated in a 3D computational model of the Left Anterior Descending coronary artery (LAD) and its first diagonal branch (D1) under the heart motion. A one-way Lagrangian approach is performed to trace the monocyte particles under different blood flow regimes and heart motion...