Loading...
Search for: body-equilibrium
0.006 seconds
Total 26 records

    Goal equivalent manifold analysis of task performance in non-specific LBP and healthy subjects during repetitive trunk movement; effect of load, velocity, symmetry

    , Article Human Movement Science ; Volume 51 , 2017 , Pages 72-81 ; 01679457 (ISSN) Chehrehrazi, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Jamshidi, A. A ; Maroufi, N ; Parnianpour, M ; Sharif University of Technology
    Abstract
    Motor abundance allows reliability of motor performance despite its variability. The nature of this variability provides important information on the flexibility of control strategies. This feature of control may be affected by low back pain (LPB) and trunk flexion/extension conditions. Goal equivalent manifold (GEM) analysis was used to quantify the ability to exploit motor abundance during repeated trunk flexion/extension in healthy individuals and people with chronic non-specific LBP (CNSLBP). Kinematic data were collected from 22 healthy volunteers and 22 CNSLBP patients during metronomically timed, repeated trunk flexion/extension in three conditions of symmetry, velocity, and loading;... 

    Effect of vibration on postural control and gait of elderly subjects: a systematic review

    , Article Aging Clinical and Experimental Research ; Volume 30, Issue 7 , 2018 , Pages 713-726 ; 15940667 (ISSN) Aboutorabi, A ; Arazpour, M ; Bahramizadeh, M ; Farahmand, F ; Fadayevatan, R ; Sharif University of Technology
    Springer International Publishing  2018
    Abstract
    Background and aim: Gait and balance disorders are common in the elderly populations, and their prevalence increases with age. This systematic review was performed to summarize the current evidence for subthreshold vibration interventions on postural control and gait in elderly. Method: A review of intervention studies including the following words in the title/abstract: insole, foot and ankle appliances, vibration, noise and elderly related to balance and gait. Databases searched included PubMed, ISI Web of Knowledge, Ovid, Scopus, and Google Scholar. Fifteen articles were selected for final evaluation. The procedure was followed using the preferred reporting items for systematic reviews... 

    Postural control learning dynamics in Parkinson's disease: Early improvement with plateau in stability, and continuous progression in flexibility and mobility

    , Article BioMedical Engineering Online ; Volume 19, Issue 1 , 2020 Rahmati, Z ; Behzadipour, S ; Schouten, A. C ; Taghizadeh, G ; Firoozbakhsh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Balance training improves postural control in Parkinson's disease (PD). However, a systematic approach for the development of individualized, optimal training programs is still lacking, as the learning dynamics of the postural control in PD, over a training program, are poorly understood. Objectives: We investigated the learning dynamics of the postural control in PD, during a balance-training program, in terms of the clinical, posturographic, and novel model-based measures. Methods: Twenty patients with PD participated in a balance-training program, 3 days a week, for 6 weeks. Clinical tests assessed functional balance and mobility pre-training, mid-training, and post-training.... 

    Magnitude, symmetry and attenuation of upper body accelerations during walking in women: The role of age, fall history and walking surface

    , Article Maturitas ; Volume 139 , 2020 , Pages 49-56 Soleimanifar, M ; Mazaheri, M ; van Schooten, K. S ; Asgari, M ; Mosallanezhad, Z ; Salavati, M ; Sedaghat Nejad, E ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ireland Ltd  2020
    Abstract
    Objectives: The present experiment examined the role of age and fall history in upper body accelerations when walking on an even and on an uneven surface. Study design: An observational cross-sectional study. Main outcome measures: The magnitude (root mean square [RMS]), symmetry (harmonic ratio) and attenuation (attenuation coefficient) of upper body accelerations were quantified as primary outcomes; gait spatiotemporal parameters were measured as secondary outcomes. Methods: Twenty young adults (mean ± SD age: 29.00 ± 4.51 yrs), 20 older non-fallers (66.60 ± 5.43 yrs) and 20 older fallers (68.55 ± 4.86 yrs) walked on an even and on an uneven surface, while wearing four accelerometers... 

    How does the central nervous system address the kinetic redundancy in the lumbar spine? Three-dimensional isometric exertions with 18 Hill-model-based muscle fascicles at the L4-L5 level

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 224, Issue 3 , 2010 , Pages 487-501 ; 09544119 (ISSN) Rashedi, E ; Khalaf, K ; Nassajian, M. R ; Nasseroleslami, B ; Parnianpour, M ; Sharif University of Technology
    2010
    Abstract
    The human motor system is organized for execution of various motor tasks in a different and flexible manner. The kinetic redundancy in the human musculoskeletal system is a significant property by which the central nervous system achieves many complementary goals. An equilibrium-based biomechanical model of isometric three-dimensional exertions of trunk muscles has been developed. Following the definition and role of the uncontrolled manifold, the kinetic redundancy concept is explored in mathematical terms. The null space of the kinetically redundant system when a certain joint moment and/or stiffness are needed is derived and discussed. The aforementioned concepts have been illustrated,... 

    Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 2 , 2005 , Pages 103-113 ; 10255842 (ISSN) Golkhou, V ; Parnianpour, M ; Lucas, C ; Sharif University of Technology
    2005
    Abstract
    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency. The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear musclelike- actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organlike sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex...