Loading...
Search for: boundary-condition
0.009 seconds

    Dynamic response of thin plates on time-varying elastic point supports

    , Article Structural Engineering and Mechanics ; Volume 62, Issue 4 , 2017 , Pages 431-441 ; 12254568 (ISSN) Foyouzat, M. A ; Estekanchia, H. E ; Sharif University of Technology
    Techno Press  2017
    Abstract
    In this article, an analytical-numerical approach is presented in order to determine the dynamic response of thin plates resting on multiple elastic point supports with time-varying stiffness. The proposed method is essentially based on transforming a familiar governing partial differential equation into a new solvable system of linear ordinary differential equations. When dealing with time-invariant stiffness, the solution of this system of equations leads to a symmetric matrix, whose eigenvalues determine the natural frequencies of the point-supported plate. Moreover, this method proves to be applicable for any plate configuration with any type of boundary condition. The results, where... 

    Transient analysis of falling cylinder in non-Newtonian fluids: further opportunity to employ the benefits of SPH method in fluid-structure problems

    , Article Chemical Product and Process Modeling ; Volume 12, Issue 1 , 2017 ; 21946159 (ISSN) Kamyabi, M ; Ramazani Saadat Abadi, A ; Kamyabi, A ; Sharif University of Technology
    Walter de Gruyter GmbH  2017
    Abstract
    Smoothed particle hydrodynamics (SPH) was applied to simulate the free falling of cylindrical bodies in three types of fluids including Newtonian, generalized-Newtonian and viscoelastic fluids. Renormalized derivation schemes were used because of their consistency in combination with the latest version of no slip boundary condition to improve the handling of moving fluid-structure interactions (FSIs). Verification of the method was performed through comparing the results of some benchmark examples for both single and two phase flows with the literature. The effects of some parameters such as the viscosity of the Newtonian fluid, the n index of the power-law fluid and the relaxation time of... 

    Experimental works on dynamic behavior of laminated composite beam incorporated with magneto-rheological fluid under random excitation

    , Article ACM International Conference Proceeding Series, 8 February 2017 through 12 February 2017 ; Volume Part F128050 , 2017 , Pages 156-161 ; 9781450352802 (ISBN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Association for Computing Machinery  2017
    Abstract
    Laminated composite structures are widely being used in modern industries particularly robot arms, aerospace and wind turbine blades where the structures mainly exposed to harsh random vibration and in turn, leads to unpredicted failure. Adding Magneto-rheological (MR) fluids in such structures may significantly improve their dynamic response. In the present work, the vibration response of laminated composite beams filled with MR fluids (MR laminated beam) under random loading has been investigated using experimental as well as simulation approaches. Finite Element Model (FEM) has been utilized to simulate the vibration response under random loading. An in-house set-up has been designed to... 

    Boundary control of flexible satellite vibration in planar motion

    , Article Journal of Sound and Vibration ; Volume 432 , 2018 , Pages 549-568 ; 0022460X (ISSN) Kaviani Rad, H ; Salarieh, H ; Alasty, A ; Vatankhah, R ; Sharif University of Technology
    Academic Press  2018
    Abstract
    In this paper, the planar maneuver of a flexible satellite with regard to its flexible appendages vibration has been studied. The flexible satellite translates and rotates in a plane; in addition, the flexible appendages can also vibrate in that plane. The system governing equations, which are coupled partial and ordinary differential equations, are obtained based on Hamilton's principle. Then the original system converts to three equivalent subsystems, two of which contains one partial differential equation and one ordinary differential equation along with four boundary conditions, by using change of variables. Employing control forces and one control torque which are applied to the central... 

    Free vibration analysis of functionally graded stiffened micro-cylinder based on the modified couple stress theory

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2598-2615 ; 10263098 (ISSN) Jabbarian, S ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    In this paper, free vibration of the micro-cylinder made by functionally graded material stiffened in circumferential direction was investigated based on modified couple stress and first-order shear deformation theories. Modified Couple Stress Theory (MCST) was used to catch size effects in micro scales. By using first-order shear deformation theory and Hamilton's principle, the general equations of motion and corresponding boundary conditions were derived. Free vibration of the structure was investigated by implementing simply-supported boundary condition as a common case. The effects of different parameters, such as dimensionless length scale parameter, distribution of FGM properties,... 

    Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement

    , Article Journal of the Acoustical Society of America ; Volume 144, Issue 3 , 2018 , Pages 1521-1527 ; 00014966 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    Acoustical Society of America  2018
    Abstract
    In this study, the numerical simulation of the fluid flow and acoustic field of a supersonic jet is performed by using high-order discretization and the vorticity confinement (VC) method on coarse grids. The three-dimensional Navier-Stokes equations are considered in the generalized curvilinear coordinate system and the high-order compact finite-difference scheme is applied for the space discretization, and the time integration is performed by the fourth-order Runge-Kutta scheme. A low-pass high-order filter is applied to stabilize the numerical solution. The non-reflecting boundary conditions are adopted for all the free boundaries, and the Kirchhoff surface integration is utilized to... 

    Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

    , Article Structural Engineering and Mechanics ; Volume 66, Issue 5 , 10 June , 2018 , Pages 621-629 ; 12254568 (ISSN) Hosseini Kordkheili, S. A ; Mousavi, T ; Bahai, H ; Sharif University of Technology
    Techno Press  2018
    Abstract
    By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos. Copyright © 2018 Techno-Press,... 

    Effect of multiphase fluid and functionally graded density fluid on the stability of spinning partially-filled shells

    , Article International Journal of Mechanical Sciences ; Volume 140 , 2018 , Pages 109-118 ; 00207403 (ISSN) Sahebnasagh, M ; Nikkhah Bahrami, M ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The effect of a multiphase fluid, including an arbitrary number of liquid phases, and a functionally graded density fluid on the stability of rotating partially-filled cylindrical shells is investigated. The first-order shear shell theory is used for modeling the structural dynamics of the shell and a 2D model is introduced based on the Navier–Stokes equations, for fluid motion. The multiphase and the functionally graded density fluids are arranged according to the mass density in a steady state condition due to centrifugal forces. Using the boundary conditions between liquid phases and the boundary conditions of the fluid on the cylinder wall, the coupled fluid-structure system model is... 

    Analytical and molecular dynamics simulation approaches to study behavior of multilayer graphene-based nanoresonators incorporating interlayer shear effect

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 2 , 2018 ; 09478396 (ISSN) Nikfar, M ; Asghari, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Analytical and molecular dynamics simulation approaches are used in this paper to study free-vibration behavior of multilayer graphene-based nanoresonators considering interlayer shear effect. According to experimental observations, the weak interlayer van der Waals interaction cannot maintain the integrity of carbon atoms in the adjacent layers. Hence, it is vital that the interlayer shear effect is taken into account to design and analyze multilayer graphene-based nanoresonators. The differential equation of motion and the general form of boundary conditions are first derived for multilayer graphene sheets with rectangular shape using the Hamilton’s principle. Then, by pursuing an... 

    Static pull-in analysis of electrostatically actuated functionally graded micro-beams based on the modified strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 10, Issue 3 , 2018 ; 17588251 (ISSN) Taati, E ; Sina, N ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2018
    Abstract
    In this paper, the static pull-in behavior of electrostatically actuated functionally graded (FG) micro-beams resting on an elastic medium is studied using the modified strain gradient (MSG) theory. To this end, the equilibrium equation along with classical and non-classical boundary conditions is obtained by considering the fringing field and elastic foundations effects within the principle of minimum total potential energy. Also, the elastic medium is composed of a shear layer (Pasternak foundation) and a linear normal layer (Winkler foundation). The governing differential equation is solved for cantilever and doubly fixed FG beams using an iterative numerical method. This method is a... 

    Scattering of SH-waves by a nano-fiber beneath the interface of two bonded half-spaces within surface/interface elasticity via multipole expansion

    , Article International Journal of Solids and Structures ; Volume 130-131 , 2018 , Pages 258-279 ; 00207683 (ISSN) Ghafarollahi, A ; Shodja, H. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present work aims to study the anti-plane scattering of SH-waves by an elastic micro-/nano-fiber which is embedded near the interface between exponentially graded and homogeneous half-spaces incorporating interface effects. The fiber is perfectly bonded to the inhomogeneous medium. It is well-known that traditional elasticity theory is incapable of accounting accurately for the nanoscopic-interfaces and, likewise, inappropriate for the prediction of the behavior of nano-sized structures where the surface-to-volume ratio is remarkably large. In the present study, the interface effects are incorporated using the well-known (Gurtin and Murdoch, 1975) surface elasticity theory which permits... 

    An analytical method for free vibration analysis of functionally graded beams

    , Article Materials and Design ; Volume 30, Issue 3 , 2009 , Pages 741-747 ; 02641275 (ISSN) Sina, S. A ; Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    A new beam theory different from the traditional first-order shear deformation beam theory is used to analyze free vibration of functionally graded beams. The beam properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. It is assumed that the lateral normal stress of the beam is zero and the governing equations of motion are derived using Hamilton's principle. Resulting system of ordinary differential equations of free vibration analysis is solved using an analytical method. Different boundary conditions are considered and comparisons are made among different beam theories. Also, the effects of... 

    Prediction capabilities of classical and shear deformable beam models excited by a moving mass

    , Article Journal of Sound and Vibration ; Volume 320, Issue 3 , 2009 , Pages 632-648 ; 0022460X (ISSN) Kiani, K ; Nikkhoo, A ; Mehri, B ; Sharif University of Technology
    2009
    Abstract
    In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extended Newmark-β method are utilized for spatial and time discretization of the problem, correspondingly. The design parameter spectra in terms of the beam slenderness, mass weight and velocity of the moving... 

    Element free galerkin mesh-less method for fully coupled analysis of a consolidation process

    , Article Scientia Iranica ; Volume 16, Issue 1 A , 2009 , Pages 65-77 ; 10263098 (ISSN) Oliaei, M. N ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    A formulation of the Element Free Galerkin (EFG), one of the mesh-less methods, is developed for solving coupled problems and its validity for application to soil-water problems is examined through numerical analysis. The numerical approach is constructed to solve, two governing partial differential equations of equilibrium and the. continuity of pore water, simultaneously. Spatial variables in a weak form, the displacement increment and excess pore, water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used to create the discretization of the... 

    Vibrational analysis of single-walled carbon nanotubes using beam element

    , Article Thin-Walled Structures ; Volume 47, Issue 6-7 , 2009 , Pages 646-652 ; 02638231 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    Vibrational analysis of single-walled carbon nanotubes (SWCNTs) is performed using a finite element method (FEM). To this end, the vibrational behavior of bridge and cantilever SWCNTs with different side lengths and diameters is modeled by three-dimensional elastic beams and point masses. The beam element elastic properties are calculated by considering mechanical characteristics of the covalent bonds between the carbon atoms in the hexagonal lattice. The mass of each beam element is assumed as point masses at nodes coinciding with the carbon atoms. Implementing the atomistic simulation approach, the natural frequencies of zigzag and armchair SWCNTs are computed. It is observed that the... 

    Lattice Boltzmann simulation of convective flow and heat transfer in a nanofluid-filled hollow cavity

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 29, Issue 9 , 2019 , Pages 3075-3094 ; 09615539 (ISSN) Pu, Q ; Aalizadeh, F ; Aghamolaei, D ; Masoumnezhad, M ; Rahimi, A ; Kasaeipoor, A ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: This paper aims to to simulate the flow and heat transfer during free convection in a square cavity using double-multi-relaxation time (MRT) lattice Boltzmann method. Design/methodology/approach: The double-MRT lattice Boltzmann method is used, and the natural convection fluid flow and heat transfer under influence of different parameters are analyzed. The D2Q5 model and D2Q9 model are used for simulation of temperature field and flow field, respectively. The cavity is filled with CuO-water nanofluid; in addition, the thermo-physical properties of nanofluid and the effect of nanoparticles’ shapes are considered using Koo–Kleinstreuer–Li (KKL) model. On the other hand, the cavity is... 

    A quasi-three-dimensional thermal model for multi-stream plate fin heat exchangers

    , Article Applied Thermal Engineering ; Volume 157 , 2019 ; 13594311 (ISSN) Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this study, a novel pseudo-three-dimensional model is developed to find out both fluid and solid temperature distributions in multi-stream plate fin heat exchangers. In this simulation algorithm, heat exchangers can be in either parallel flow or cross flow configuration. The model considerations include: heat leakage of cap plates and side plates, conduction throughout the solid matrix of the heat exchanger, variable physical properties, and inlet mass flow rate maldistribution. Using the computational code, the effects of different factors such as: the number of layers, mass flow variation, inlet mass flow rate maldistribution, and stacking pattern on the thermal performance of the heat... 

    Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 9 , 2019 , Pages 1543-1557 ; 10775463 (ISSN) Safarpour, H ; Pourghader, J ; Habibi, M ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    In this article, vibrational behavior and critical voltage of a spinning cylindrical thick shell covered with piezoelectric actuator (PIAC) carrying spring-mass systems are investigated. It should be noted that, the installed sensors on the proposed systems are considered as a tip mass. This structure rotates about axial direction and the formulations include the Coriolis and centrifugal effects. In addition, various cases of thermal (uniform, linear, and nonlinear) distributions are studied. The modeled cylindrical thick shell covered with PIAC, its equations of motion, and boundary conditions are derived by the principle of minimum total potential energy and based on a new... 

    Effect of several heated interior bodies on turbulent natural convection in enclosures

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1335-1349 ; 10263098 (ISSN) Nouri Borujerdi, A ; Sepahi, F ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this study, turbulent natural convection in a square enclosure including one or four hot and cold bodies is numerically investigated in the range of Rayleigh numbers of 1010 < Ra < 1012. The shape of the internal bodies is square or rectangular with the same surface areas and different aspect ratios. In all cases, the horizontal walls of the enclosure are adiabatic, and the vertical ones are isothermal. It is desired to investigate the influence of different shapes and arrangements of internal bodies on the heat transfer rate inside the enclosure with wide-ranging applications such as ventilation of buildings, electronic cooling, and industrial cold box packages. Governing equations,... 

    A new method for free vibration analysis of nanobeams: Introduction of equivalent lattice stiffness method

    , Article Solid State Communications ; Volume 287 , 2019 , Pages 35-42 ; 00381098 (ISSN) Firouz Abadi, R. D ; Mehralian, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Since the efficiency of non-classical continuum theories is strongly dependent on the recognition of the suitable values of small length scale parameters and there is still uncertainty about them, a novel approach, equivalent lattice stiffness method is developed here. This approach without the characteristic length scale parameter which arises in non-classical continuum theories, such as nonlocal theory and strain gradient theory, is capable to capture size effect more easily and accurately. This method is proposed based on the concept of lattice dynamics but a Taylor series expansion is involved to approximate the displacements of the continuous domain; accordingly, this approach is in...