Loading...
Search for: boundary-condition
0.012 seconds
Total 484 records

    Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 43, Issue 1 , November , 2010 , Pages 387-397 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    The free longitudinal vibration of tapered nanowires is investigated in the context of nonlocal continuum theory. The problem is studied for the nanowires with linearly varied radii under fixedfixed and fixedfree boundary conditions. In order to assess the problem in a more general form, a perturbation technique is proposed based on the Fredholm alternative theorem. The natural frequencies, corresponding mode shapes, and phase velocities of the tapered nanowires are derived analytically up to the second-order perturbation for different boundary conditions. The predicted results by the perturbation technique are successfully verified with those of the exact solution. The obtained results... 

    Highly accurate and east convergent diffractive interface theory for fast analysis of metasurfaces

    , Article IEEE Journal of Quantum Electronics ; Volume 52, Issue 7 , 2016 ; 00189197 (ISSN) Nekuee, S. A. H ; Khavasi, A ; Akbari, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Recently, an approximate formalism [Opt. Express 23, 2764, (2015)] called diffractive interface theory has been reported for the fast analysis of the optical response of metasurfaces, subwavelength two-dimensional periodic arrays. In this method, the electromagnetic boundary conditions are derived using the susceptibility distribution of the metasurface, such that the analysis of metasurface is possible without solving any eigenvalue equation inside the grating layer. In this paper, we modify the boundary conditions to achieve more accurate results. In addition, in this paper, correct Fourier factorization rules are also applied leading to faster convergence rate. The obtained results are... 

    An analytical approach for buckling analysis of generally laminated conical shells under axial compression

    , Article Acta Mechanica ; Volume 227, Issue 4 , 2016 , Pages 1181-1198 ; 00015970 (ISSN) Sharghi, H ; Shakouri, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Springer-Verlag Wien 
    Abstract
    In the present investigation, the buckling of generally laminated conical shells with various boundary conditions subjected to axial pressure is studied using an analytical approach. The governing equations are obtained using classical shell theory with Donnell assumptions in strain–deformation relations and the principle of minimum potential energy. The differential equations are solved using trigonometric functions in circumferential and power series in longitudinal directions. All types of boundary conditions can be applied in this method. The results are compared and validated with the results available in the literature, and good agreement is observed. Finally, the effects of the... 

    Free vibrations analysis of carbon nanotubes resting on winkler foundations based on nonlocal models

    , Article Physica B: Condensed Matter ; Volume 484 , 2016 , Pages 83-94 ; 09214526 (ISSN) Rahmanian, M ; Torkaman Asadi, M. A ; Firouz Abadi, R. D ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier 
    Abstract
    In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn  

    On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 5 , 2017 , 315 ; 09478396 (ISSN) Mirjavadi, S. S ; Rabby, S ; Shafiei, N ; Mohasel Afshari, B ; Kazemi, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This article aims to study the buckling and free vibrational behavior of axially functionally graded (AFG) nanobeam under thermal effect for the first time. The temperature is considered to be constant and variable along thickness and different boundary conditions. The governing equation is developed using the Hamilton’s principle considering the axial force. The Euler–Bernoulli beam theory is used to model the nanobeam, and Eringen’s nonlocal elasticity theory is utilized to consider the nano-size effect. The generalized differential quadrature method (GDQM) is used to solve the equations. The small-scale parameter, AFG power index, thermal distribution, different functions of temperature... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-14 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S. S ; Shafiei, N ; Hamouda, A. M. S ; Davari, E ; Sharif University of Technology
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law... 

    Dynamic response of a flat plate subjected to compression force during vertical and oblique impacts with calm water

    , Article Engineering Structures ; Volume 176 , 2018 , Pages 697-706 ; 01410296 (ISSN) Moradi, H ; Rahbar Ranji, A ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    An existing hydroelastic model is extended for a flat plate subjected to a compression force with spiral spring boundary conditions during water entry. Both vertical and oblique impacts of the plate into calm water are investigated. A longitudinal strip of the plate is analyzed by fully coupling hydrodynamic pressure with elastic responses. Hydrodynamic pressure is determined by potential flow theory and plate deflections are expressed in terms of dry normal modes. The plate deflections are validated through comparison with available asymptotic models, semi-analytical and experimental results. The effect of compression force on the plate deflection is investigated at the midpoint considering... 

    Assessment of characteristic boundary conditions based on the artificial compressibility method in generalized curvilinear coordinates for solution of the Euler equations

    , Article Computational Methods in Applied Mathematics ; Volume 18, Issue 4 , 2018 , Pages 717-740 ; 16094840 (ISSN) Parseh, K ; Hejranfar, K ; Sharif University of Technology
    De Gruyter  2018
    Abstract
    The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 6 , 2018 , Pages 467-480 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S ; Shafiei, N ; Salem Hamouda, A. M ; Davari, E ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law... 

    Solution of thermally developing zone in short micro-/nanoscale channels

    , Article Journal of Heat Transfer ; Volume 131, Issue 4 , 2009 , Pages 1-15 ; 00221481 (ISSN) Darbandi, M ; Vakilipour, S ; Sharif University of Technology
    2009
    Abstract
    We numerically solve the Navier-Stokes equations to study the rarefied gas flow in short micro-and nanoscale channels. The inlet boundary conditions play a critical role in the structure of flow in short channels. Contrary to the classical inlet boundary conditions, which apply uniform velocity and temperature profiles right at the real channel inlet, we apply the same inlet boundary conditions, but at a fictitious position far upstream of the real channel inlet. A constant wall temperature incorporated with suitable temperature jump is applied at the channel walls. Our solutions for both the classical and extended inlet boundary conditions are compared with the results of other available... 

    Exact solution for frequency response of sandwich microbeams with functionally graded cores

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 19-20 , 2019 , Pages 2641-2655 ; 10775463 (ISSN) Taati, E ; Fallah, F ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    Based on the Euler–Bernoulli beam model and the modified strain gradient theory, the size-dependent forced vibration of sandwich microbeams with a functionally graded (FG) core is presented. The equation of motion and the corresponding classical and nonclassical boundary conditions are derived using the Hamilton’s principle. An exact solution of the governing equation is developed for sandwich beams with various boundary conditions and subjected to an arbitrarily distributed harmonic transverse load. Finally, parametric studies are presented to investigate the effects of geometric ratios, length scale parameters, power index, boundary conditions, layup, and thickness of the FG layer on the... 

    Unsteady preconditioned characteristic boundary conditions for direct numerical simulation of incompressible flows

    , Article AIAA Journal ; Volume 58, Issue 4 , 2020 , Pages 1476-1489 Parseh, K ; Hejranfar, K ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    The unsteady preconditioned characteristic boundary conditions (UPCBCs) based on the artificial compressibility (AC) method are formulated and applied at artificial boundaries for the direct numerical simulation (DNS) of incompressible flows. The compatibility equations including the unsteady terms are mathematically derived in the generalized curvilinear coordinates and then incorporated as boundary conditions (BCs) in a high-order accurate incompressible flowsolver. The spatial derivative terms of the systemof equations are discretized using the fourth-order compact finite difference (FD) scheme, consistent with the high-order accuracy required for the DNS. The time integration is carried... 

    DSMC solution of supersonic scale to choked subsonic flow in micro to nano channels

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART A , 2008 , Pages 985-993 ; 0791848345 (ISBN); 9780791848340 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; ASME ; Sharif University of Technology
    2008
    Abstract
    In this study, the supersonic and choked subsonic flows through micro/nano channels are investigated using direct simulation Monte Carlo (DSMC) method. The supersonic case is simulated at different Knudsen numbers covering slip to transition flow regimes, while the effects of inlet Mach and back pressure are studied in details. The inlet/outlet pressure boundary conditions are suitably implemented benefiting from the basics of characteristics theory. A behavior similar to the one predicted by the Fanno theory is observed here; i.e., the supersonic flow velocity decelerates up to a choking condition where any further increase in Knudsen number is impossible unless strong normal/oblique shocks... 

    Greatly reduced radiation loss in planar waveguides with two-dimensional conducting interfaces

    , Article IET Optoelectronics ; Volume 2, Issue 4 , 2008 , Pages 158-164 ; 17518768 (ISSN) Sarrafi, P ; Zareian, N ; Mehrany, K ; Sharif University of Technology
    2008
    Abstract
    A new strategy for radiation loss reduction in curved slab waveguides is presented. The proposed strategy is based on the proper modification of the boundary conditions at the core-to-cladding interface, whereupon extremely thin conductive nanolayers with non-zero surface conductance are imposed. The obtained numerical results show a noticeable decrease in the overall loss level. © 2008 The Institution of Engineering and Technology  

    Supersonic flutter prediction of functionally graded cylindrical shells

    , Article Composite Structures ; Volume 83, Issue 4 , 2008 , Pages 391-398 ; 02638223 (ISSN) Haddadpour, H ; Mahmoudkhani, S ; Navazi, H. M ; Sharif University of Technology
    2008
    Abstract
    The supersonic flutter analysis of simply supported FG cylindrical shell for different sets of in-plane boundary conditions is performed. The aeroelastic equations of motion are constructed using Love's shell theory and von Karman-Donnell-type of kinematic nonlinearity coupled with linearized first-order potential (piston) theory. The material properties are assumed to be temperature-dependant and graded across the thickness of the shell according to a simple power law. The temperature distribution is assumed to vary in the thickness direction and is obtained by solving the steady-state heat conduction equation. The pre-stresses due to the thermal and mechanical loadings are obtained by... 

    Error estimate in calculating natural frequencies of a vibrating shaft by changing number of segments using lumped parameter model and transfer matrix method

    , Article 7th European Conference on Structural Dynamics, EURODYN 2008, 7 July 2008 through 9 July 2008 ; 2008 ; 9780854328826 (ISBN) Kargarnovin, M. H ; Sharif University of Technology
    University of Southampton, Institute of Sound Vibration and Research  2008
    Abstract
    In this paper using classical beam theory, the dynamical governing differential equations of a vibrating shaft are derived then by using lumped parameter technique and method of transfer matrix (TM) the induced eigen value problem is solved. In calculating natural frequencies of a vibrating shaft under different boundary conditions, primarily the shaft was divided into number of segments. In each segment different number of lumped properties like mass, damping and flexibility on overall massless elastic or rigid shaft were applied. One of the aims of this study was to find out the optimum value for number of segments under different aforementioned conditions. In order to estimate the natural... 

    A numerical study of chamber size and boundary effects on CPT tip resistance in NC sand

    , Article Scientia Iranica ; Volume 15, Issue 5 , 2008 , Pages 541-553 ; 10263098 (ISSN) Ahmadi, M. M ; Robertson, P. K ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    A numerical modeling procedure was used to quantify calibration chamber size and boundary effects for cone penetration testing in sand. In the numerical analyses, chamber diameter and boundary conditions were varied to investigate the effects of chamber size and boundary conditions on cone tip resistance. These analyses show that, for loose sand, a chamber-to-cone diameter ratio of 33 is sufficient for the boundaries to have no influence on the cone tip measurements. However, for very dense sand, the numerical analyses show that the chamber-to-cone diameter ratio should be more than 100 to ensure that boundaries have no influence on cone tip measurements. Numerical analysis indicates that,... 

    Computation of rarefied gaseous flows in micro to nano scale channels with slip to transient regimes using general second-order quadratic elements

    , Article Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, 23 June 2008 through 25 June 2008, Darmstadt ; Issue PART A , 2008 , Pages 55-64 ; 0791848345 (ISBN); 9780791848340 (ISBN) Darbandi, M ; Daghighi, Y ; Sharif University of Technology
    2008
    Abstract
    A new finite-volume-based finite-element method using the quadratic elements is developed in the present study, to analyze the flow in micro and nano sizes with higher-order slip boundary conditions. The method is applied to gaseous flow in micro and nanoscale-channels. The developed method is carried out over a wide range of Knudsen numbers, which cover not only the continuum slip flow regime with 0≤Kn≤0.1 but also it entire the range of transient regime with 0.1

    Separation of delamination modes in composite beams with symmetric delaminations

    , Article Materials and Design ; Volume 27, Issue 10 , 2006 , Pages 900-910 ; 02613069 (ISSN) Hamed, M. A ; Nosier, A ; Farrahi, G. H ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    Delaminated composite beam under general edge loading conditions is studied. Based on a technical engineering theory an analytical procedure for calculation of strain energy release rate and its separation into modes I and II of delamination is presented. By choosing a suitable displacement field based on second-order shear-thickness deformation theory and using the principle of minimum total potential energy, the equations of equilibrium are obtained along with the appropriate boundary conditions. The J integral and its definition for different modes of fracture is used for calculation of strain energy release rate and its separation into different modes. Double cantilever beam (DCB)... 

    A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method

    , Article Engineering with Computers ; 2021 ; 01770667 (ISSN) Liu, H ; Zhao, Y ; Pishbin, M ; Habibi, M ; Bashir, M. O ; Issakhov, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this study, frequency simulation and critical angular velocity of a size-dependent laminated rotary microsystem using modified couple stress theory (MCST) as the higher-order elasticity model is undertaken. The centrifugal and Coriolis impacts due to the spinning are taken into account. The size-dependent thick annular microsystem's computational formulation, non-classical governing equations, and corresponding boundary conditions are obtained by using the higher-order stress tensors and symmetric rotation gradient to the strain energy. By using a single material length scale factor, the most recent non-classical approach captures the size-dependency in the annular laminated microsystem....