Loading...
Search for: boundary-condition
0.017 seconds
Total 484 records

    Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading

    , Article Meccanica ; Volume 52, Issue 7 , 2017 , Pages 1495-1502 ; 00256455 (ISSN) Asgari, M ; Permoon, M. R ; Haddadpour, H ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The stability of a viscoelastic plate strip, subjected to an axial load with the Kelvin–Voigt fractional order constitutive relationship is studied. Based on the classical plate theory, the structural formulation of the plate is obtained by using the Newton’s second law and the aerodynamic force due to the fluid flow is evaluated by piston theory. The Galerkin method is employed to discretize the equation of motion into a set of ordinary differential equations. To determine the stability margin of plate the obtained set of ordinary differential equations are solved using the Laplace transform method. The effects of variation of the governing parameters such as axial force, retardation time,... 

    Dynamic response of thin plates on time-varying elastic point supports

    , Article Structural Engineering and Mechanics ; Volume 62, Issue 4 , 2017 , Pages 431-441 ; 12254568 (ISSN) Foyouzat, M. A ; Estekanchia, H. E ; Sharif University of Technology
    Techno Press  2017
    Abstract
    In this article, an analytical-numerical approach is presented in order to determine the dynamic response of thin plates resting on multiple elastic point supports with time-varying stiffness. The proposed method is essentially based on transforming a familiar governing partial differential equation into a new solvable system of linear ordinary differential equations. When dealing with time-invariant stiffness, the solution of this system of equations leads to a symmetric matrix, whose eigenvalues determine the natural frequencies of the point-supported plate. Moreover, this method proves to be applicable for any plate configuration with any type of boundary condition. The results, where... 

    Dynamic response of geometrically nonlinear, elastic rectangular plates under a moving mass loading by inclusion of all inertial components

    , Article Journal of Sound and Vibration ; Volume 394 , 2017 , Pages 497-514 ; 0022460X (ISSN) Rahimzadeh Rofooei, F ; Enshaeian, A ; Nikkhoo, A ; Sharif University of Technology
    Academic Press  2017
    Abstract
    Dynamic deformations of beams and plates under moving objects have extensively been studied in the past. In this work, the dynamic response of geometrically nonlinear rectangular elastic plates subjected to moving mass loading is numerically investigated. A rectangular von Karman plate with various boundary conditions is modeled using specifically developed geometrically nonlinear plate elements. In the available finite element (FE) codes the only way to distinguish between moving masses from moving loads is to model the moving mass as a separate entity. However, these procedures still do not guarantee the inclusion of all inertial effects associated with the moving mass. In a prepared... 

    On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 5 , 2017 , 315 ; 09478396 (ISSN) Mirjavadi, S. S ; Rabby, S ; Shafiei, N ; Mohasel Afshari, B ; Kazemi, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    This article aims to study the buckling and free vibrational behavior of axially functionally graded (AFG) nanobeam under thermal effect for the first time. The temperature is considered to be constant and variable along thickness and different boundary conditions. The governing equation is developed using the Hamilton’s principle considering the axial force. The Euler–Bernoulli beam theory is used to model the nanobeam, and Eringen’s nonlocal elasticity theory is utilized to consider the nano-size effect. The generalized differential quadrature method (GDQM) is used to solve the equations. The small-scale parameter, AFG power index, thermal distribution, different functions of temperature... 

    Transient analysis of falling cylinder in non-Newtonian fluids: further opportunity to employ the benefits of SPH method in fluid-structure problems

    , Article Chemical Product and Process Modeling ; Volume 12, Issue 1 , 2017 ; 21946159 (ISSN) Kamyabi, M ; Ramazani Saadat Abadi, A ; Kamyabi, A ; Sharif University of Technology
    Walter de Gruyter GmbH  2017
    Abstract
    Smoothed particle hydrodynamics (SPH) was applied to simulate the free falling of cylindrical bodies in three types of fluids including Newtonian, generalized-Newtonian and viscoelastic fluids. Renormalized derivation schemes were used because of their consistency in combination with the latest version of no slip boundary condition to improve the handling of moving fluid-structure interactions (FSIs). Verification of the method was performed through comparing the results of some benchmark examples for both single and two phase flows with the literature. The effects of some parameters such as the viscosity of the Newtonian fluid, the n index of the power-law fluid and the relaxation time of... 

    Experimental works on dynamic behavior of laminated composite beam incorporated with magneto-rheological fluid under random excitation

    , Article ACM International Conference Proceeding Series, 8 February 2017 through 12 February 2017 ; Volume Part F128050 , 2017 , Pages 156-161 ; 9781450352802 (ISBN) Momeni, S ; Zabihollah, A ; Behzad, M ; Sharif University of Technology
    Association for Computing Machinery  2017
    Abstract
    Laminated composite structures are widely being used in modern industries particularly robot arms, aerospace and wind turbine blades where the structures mainly exposed to harsh random vibration and in turn, leads to unpredicted failure. Adding Magneto-rheological (MR) fluids in such structures may significantly improve their dynamic response. In the present work, the vibration response of laminated composite beams filled with MR fluids (MR laminated beam) under random loading has been investigated using experimental as well as simulation approaches. Finite Element Model (FEM) has been utilized to simulate the vibration response under random loading. An in-house set-up has been designed to... 

    Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions

    , Article International Journal of Mechanical Sciences ; Volume 120 , 2017 , Pages 42-61 ; 00207403 (ISSN) Rahmanian, M ; Firouz Abadi, R. D ; Cigeroglu, E ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A fast and efficient reduced order formulation is presented for the first time to study dynamics and stability of conical/cylindrical shells with internal fluid flows. The structural and fluid formulations are developed based on general assumptions to avoid any deficiency due to modeling. Their respective solutions and the final solution to the coupled field problem are also developed in a way to be capable of capturing any desirable set of boundary conditions. In addition to the flexibility provided by the solution methodology and generalization provided by the formulation, current solution proposes an additional advantage over others which is the minimal computational cost due to the... 

    Seismic performance evaluation of a jointed arch dam

    , Article Structure and Infrastructure Engineering ; Volume 12, Issue 2 , 2016 , Pages 256-274 ; 15732479 (ISSN) Alembagheri, M ; Ghaemian, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Seismic performance and safety of a jointed arch dam, as an arch-shaped mass concrete structure, are investigated through the nonlinear incremental dynamic analysis. In this way, 12 proper ground motions are selected, each of them is scaled to 12 successively increasing intensity levels and applied to the dam. Three and seven contraction joints are inserted within the dam body, and stage construction is taken into account. Several main assumptions including dam–reservoir–foundation dynamic interaction, absorbing boundary conditions at the far-ends of the reservoir and foundation, and material and joint nonlinearities are considered. The failure modes of the dam are determined according to... 

    Free vibration of bi-material cylindrical shells

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 230, Issue 15 , 2016 , Pages 2637-2649 ; 09544062 (ISSN) Sarkheil, S ; Foumani, M. S ; Navazi, H. M ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    Based on the Sanders thin shell theory, this paper presents an exact solution for the vibration of circular cylindrical shell made of two different materials. The shell is sub-divided into two segments and the state-space technique is employed to derive the homogenous differential equations. Then continuity conditions are applied where the material of the cylindrical shell changes. Shells with various combinations of end boundary conditions are analyzed by the proposed method. Finally, solving different examples, the effect of geometric parameters as well as BCs on the vibration of the bi-material shell is studied  

    Oscillatory response of charged droplets in hydrogels

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 234 , 2016 , Pages 215-235 ; 03770257 (ISSN) Mohammadi, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Characterization of droplet-hydrogel interfaces is of crucial importance to engineer droplet-hydrogel composites for a variety of applications. In order to develop electrokinetic diagnostic tools for probing droplet-hydrogel interfaces, the displacement of a charged droplet embedded in a polyelectrolyte hydrogel exposed to an oscillating electric field is determined theoretically. The polyelectrolyte hydrogel is modeled as an incompressible, charged, porous, and elastic solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no charges within the droplet. The droplet-hydrogel interface is modeled as a surface with the thickness of zero... 

    Multi-directional response of unreinforced masonry walls: experimental and computational investigations

    , Article Earthquake Engineering and Structural Dynamics ; Volume 45, Issue 9 , 2016 , Pages 1427-1449 ; 00988847 (ISSN) Dolatshahi, K. M ; Aref, A. J ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    This paper describes the results of an experimental and numerical study that focused on multi-directional behavior of unreinforced masonry walls and established the requisite of the related proposed design equations. The tests were conducted following several sets of multi-directional loading combinations imposed on the top plane of the wall along with considering monotonic and cyclic quasi-static loading protocols. Various boundary conditions, representing possible wall–roof connections, were also considered for different walls to investigate the influence of rotation of the top plane of the wall on the failure modes. The results of the tests were recorded with a host of high precision data... 

    Two-dimensional symmetric double contacts of elastically similar materials

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 230, Issue 10 , 2016 , Pages 1626-1633 ; 09544062 (ISSN) Ghanati, P ; Adibnazari, S ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    The two-dimensional contact problem for an elastic body indenting an elastically similar half plane resulting in double contacts is important for various applications. In this paper, a generic quasi-static two-dimensional symmetric double contact problem with nonsingular end points between two elastically similar half planes, under the constant normal and oscillatory tangential loading, is analyzed. The classical singular integral equations approach is utilized to extract the pressure and shear functions in the contact zones; subsequently boundary conditions at end points are applied and a new side condition is derived and titled "the consistency condition" for symmetric double contacts.... 

    Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow

    , Article Composite Structures ; Volume 143 , 2016 , Pages 93-102 ; 02638223 (ISSN) Asgari, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Supersonic aeroelastic instability of a three-layered sandwich beam of rectangular cross section with an adaptive magneto-rheological fluid (MRF) core layer is investigated. The panel is excited by an airflow along it's longitudinal direction. The problem formulation is based on classical beam theory for the face layers, magnetic field dependent complex modulus approach for viscoelastic material model and the linear first-order piston theory for aerodynamic pressure. The classical Hamilton's principle and the assumed mode method are used to set up the equations of motion. The validity of the derived formulation is confirmed through comparison with the available results in the literature. The... 

    Natural frequency analysis of functionally graded material truncated conical shell with lengthwise material variation based on first-order shear deformation theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 5 , 2016 , Pages 565-577 ; 15376494 (ISSN) Asanjarani, A ; Kargarnovin, M. H ; Satouri, S ; Satouri, A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Based on the first-order shear deformation theory, the free vibration of the functionally graded (FG) truncated conical shells is analyzed. The truncated conical shell materials are assumed to be isotropic and inhomogeneous in the longitudinal direction. The two-constituent FG shell consists of ceramic and metal. These constituents are graded through the length, from one end of the shell to the other end. Using Hamilton's principle the derived governing equations are solved using differential quadrature method. Fast rate of convergence of this method is tested and its advantages over other existing solver methods are observed. The primary results of this study were obtained for four... 

    Free vibration analysis of cylindrical shells partially resting on an elastic foundation

    , Article Meccanica ; Volume 51, Issue 5 , 2016 , Pages 1113-1125 ; 00256455 (ISSN) Torkaman Asadi, M. A ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    The present study aims at the investigation of free vibration analysis of thin cylindrical shells surrounded by an elastic medium, which is distributed over a particular length of the shell. The Love’s shell theory is utilized along with the Winkler foundation to obtain the governing equations of motion. An exact series expansion method of solution is employed for any arbitrary boundary conditions. The excellent accuracy of the obtained results is validated by comparing to the available literature. Moreover, several case studies are performed to provide an insight into the influence of some practically important parameters on free vibrations of circular cylindrical shells, including... 

    Free vibrations of moderately thick truncated conical shells filled with quiescent fluid

    , Article Journal of Fluids and Structures ; Volume 63 , 2016 , Pages 280-301 ; 08899746 (ISSN) Rahmanian, M ; Dehghani Firouz Abadi, R ; Cigeroglu, E ; Sharif University of Technology
    Academic Press  2016
    Abstract
    A novel reduced order formulation is proposed for the vibration analysis of conical shells containing stationary fluid. Hamiltonian approach is followed to obtain the governing equations of motion for the structure. Utilizing the Navier-Stokes equations and simplifying for irrotational, compressible and inviscid assumptions, the final fluid equation is obtained. A general solution based on the Galerkin method is proposed for the conical shell in vacuum. Several boundary conditions are investigated to show the capability of the proposed solution. A novel reduced order formulation based on the finite element method is developed for solution of the fluid equation. Static condensation technique... 

    Electroosmotic flow in hydrophobic microchannels of general cross section

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 138, Issue 3 , 2016 ; 00982202 (ISSN) Sadeghi, M ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2016
    Abstract
    Adopting the Navier slip conditions, we analyze the fully developed electroosmotic flow in hydrophobic microducts of general cross section under the Debye-Hückel approximation. The method of analysis includes series solutions which their coefficients are obtained by applying the wall boundary conditions using the least-squares matching method. Although the procedure is general enough to be applied to almost any arbitrary cross section, eight microgeometries including trapezoidal, double-trapezoidal, isosceles triangular, rhombic, elliptical, semi-elliptical, rectangular, and isotropically etched profiles are selected for presentation. We find that the flow rate is a linear increasing... 

    Free vibration analysis of a beam with an intermediate sliding connection joined by a mass-spring system

    , Article JVC/Journal of Vibration and Control ; Volume 22, Issue 4 , 2016 , Pages 955-964 ; 10775463 (ISSN) Hozhabrossadati, S. M ; Aftabi Sani, A ; Mofid, M ; Sharif University of Technology
    SAGE Publications Inc  2016
    Abstract
    In the free vibration analysis of beams, the inclusion of an intermediate sliding connection with an attached mass-spring system has not been yet treated. The present paper studies the free vibrations of uniform Euler-Bernoulli beams with an intermediate sliding connection and joined by a mass-spring system. Two different types of beams are considered. The Type 1 is attached with a single-degree-of-freedom mass-spring system and the Type 2 is attached with a two-degree-of-freedom mass-spring system. The ends of both beams are elastically restrained against rotation and translation. First, the eigenvalue problems including differential equations and boundary conditions are introduced. Then,... 

    Quantum transport through 3D Dirac materials

    , Article Annals of Physics ; Volume 359 , 2015 , Pages 64-72 ; 00034916 (ISSN) Salehi, M ; Jafari, S. A ; Sharif University of Technology
    Academic Press Inc  2015
    Abstract
    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears... 

    Experimental study of some important factors on nonwetting phase recovery by cocurrent spontaneous imbibition

    , Article Journal of Natural Gas Science and Engineering ; 2015 ; 18755100 (ISSN) Hamidpour, E ; Mirzaei Paiaman, A ; Masihi, M ; Harimi, B ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Spontaneous imbibition, defined as the displacement of nonwetting phase by wetting phase in porous media by action of capillary forces, is important in many applications within earth sciences and in particular in naturally fractured oil and gas reservoirs. Hence, it is critical to investigate the various aspects of this process to correctly model the fractured reservoir behavior. In this study, twenty four experiments were conducted to study the effect of rock properties, lithology of porous medium, brine viscosity and boundary conditions on displacement rate and final recovery by cocurrent spontaneous imbibition (COCSI) in brine-oil systems. The results can be extended to brine-gas systems,...