Loading...
Search for: boundary-conditions
0.012 seconds
Total 484 records

    Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions

    , Article European Journal of Mechanics, A/Solids ; Volume 36 , 2012 , Pages 204-212 ; 09977538 (ISSN) Zamani, M ; Fallah, A ; Aghdam, M. M ; Sharif University of Technology
    2012
    Abstract
    In this study, free vibration analysis of moderately thick symmetrically laminated general trapezoidal plates with various combinations of boundary conditions is investigated. The governing partial differential equations and boundary conditions for trapezoidal plate are obtained using first order shear deformation theory (FSDT) together with proper transformation from Cartesian system into trapezoidal coordinates. Generalized differential quadrature (GDQ) method is then employed to obtain solutions for the governing equations. Results of the GDQ method are compared and validated with available results in the literature which show accuracy and fast rate of convergence of the method. Effect of... 

    Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method

    , Article Computers and Geotechnics ; Volume 46 , 2012 , Pages 75-83 ; 0266352X (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    Meshless methods are a relatively new type of numerical methods that have attracted the attention of many researchers over the past years. So far, a number of meshless methods have been developed and applied to solve problems in various fields of engineering, including solid mechanics and geotechnical problems. The Element-Free Galerkin (EFG) method is adopted in this study for solving the governing partial differential equations of equilibrium and continuity of pore fluid flow for numerical simulation of coupled hydro-mechanical problems. For this purpose, the weak form of the governing equations is derived by applying the weighted residual method and Galerkin technique. The penalty method... 

    Vibration analysis of a new type of compliant mechanism with flexible-link, using perturbation theory

    , Article Mathematical Problems in Engineering ; Volume 2012 , February , 2012 ; 1024123X (ISSN) Viliani, N. S ; Zohoor, H ; Kargarnovin, M. H ; Sharif University of Technology
    2012
    Abstract
    Vibration analysis of a new type of compliant parallel mechanism with flexible intermediate links is investigated. The application of the Timoshenko beam theory to the mathematical modeling of the intermediate flexible link is described, and the equations of motion of the flexible links are obtained by using Lagrange's equation of motion. The equations of motion are obtained in the form of a set of ordinary differential equations by using assumed mode method theory. The governing differential equations of motion are solved using perturbation method. The assumed mode shapes and frequencies are to be obtained based on clamped-clamped boundary conditions. Comparing perturbation method with... 

    On the dynamic response of a delaminated composite beam under the motion of an oscillating mass

    , Article Journal of Composite Materials ; Volume 46, Issue 22 , 2012 , Pages 2863-2877 ; 00219983 (ISSN) Jafari Talookolaei, R. A ; Kargarnovin, M. H ; Ahmadian, M. T ; Sharif University of Technology
    SAGE  2012
    Abstract
    The dynamic response of a delaminated composite beam under the motion of an oscillatory mass moving with a constant velocity has been studied. The delaminated composite beam is modeled as four interconnected sub-beams using the delamination limits as their boundaries. The constrained model is used to model the delamination region. The continuity and equilibrium conditions are forced to be satisfied between the adjoining beams. A set of derived governing differential equations along with those obtained by imposing boundary conditions are simultaneously solved in a closed form manner. The results for the response of the delaminated beam were compared with those of the intact beam. Furthermore,... 

    Nonlinear free vibrations of thin-walled beams in torsion

    , Article Acta Mechanica ; Volume 223, Issue 10 , 2012 , Pages 2135-2151 ; 00015970 (ISSN) Sina, S. A ; Haddadpour, H ; Navazi, H. M ; Sharif University of Technology
    2012
    Abstract
    Nonlinear torsional vibrations of thin-walled beams exhibiting primary and secondary warpings are investigated. The coupled nonlinear torsional-axial equations of motion are considered. Ignoring the axial inertia term leads to a differential equation of motion in terms of angle of twist. Two sets of torsional boundary conditions, that is, clamped-clamped and clamped-free boundary conditions are considered. The governing partial differential equation of motion is discretized and transformed into a set of ordinary differential equations of motion using Galerkin's method. Then, the method of multiple scales is used to solve the time domain equations and derive the equations governing the... 

    Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition

    , Article Nonlinear Dynamics ; Volume 70, Issue 2 , October , 2012 , Pages 1147-1172 ; 0924090X (ISSN) Mamandi, A ; Kargarnovin, M. H ; Farsi, S ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the Nonlinear Normal Modes (NNMs) analysis for the case of three-to-one (3:1) internal resonance of a slender simply supported beam in presence of compressive axial load resting on a nonlinear elastic foundation is studied. Using the Euler- Bernoulli beam model, the governing nonlinear PDE of the beam's transverse vibration and also its associated boundary conditions are extracted. These nonlinear motion equation and boundary condition relations are solved simultaneously using four different approximate-analytical solution techniques, namely the method of Multiple Time Scales, the method of Normal Forms, the method of Shaw and Pierre, and the method of King and Vakakis. The... 

    On the free vibration response of rectangular plates, partially supported on elastic foundation

    , Article Applied Mathematical Modelling ; Volume 36, Issue 9 , September , 2012 , Pages 4473-4482 ; 0307904X (ISSN) Motaghian, S ; Mofid, M ; Akin, J. E ; Sharif University of Technology
    2012
    Abstract
    Rectangular plates on distributed elastic foundations are widely employed in footings and raft foundations of variety of structures. In particular, mounted columns and single footings may partially occupy the rectangular plate of any kind. This study deals with free vibration problem of thin rectangular plates on Winkler and Pasternak elastic foundation model which is distributed over a particular arbitrary area of the plate. Closed form solutions are developed through solving the governing differential equations of plates. Moreover, a novel mathematical approach is proposed to find the exact analytical solution of free vibration of plates with mixed or fully-clamped boundary conditions.... 

    Nonlinear behavior of functionally graded circular plates with various boundary supports under asymmetric thermo-mechanical loading

    , Article Composite Structures ; Volume 94, Issue 9 , 2012 , Pages 2834-2850 ; 02638223 (ISSN) Fallah, F ; Nosier, A ; Sharif University of Technology
    Abstract
    The equilibrium equations of the first-order nonlinear von Karman theory for FG circular plates under asymmetric transverse loading and heat conduction through the plate thickness are reformulated into those describing the interior and edge-zone problems of the plate. A two parameter perturbation technique, in conjunction with Fourier series method is used to obtain analytical solutions for nonlinear behavior of functionally graded circular plates with various clamped and simply-supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified with known... 

    Effect of foundation in dynamic analysis of concrete gravity dams

    , Article Gradjevinar ; Volume 64, Issue 8 , 2012 , Pages 641-646 ; 03502465 (ISSN) Heirany, Z ; Ghaemian, M ; Sharif University of Technology
    Građevinar  2012
    Abstract
    In this paper, nonlinear dynamic analysis of concrete gravity dams was studied. To investigate the effect of dam-reservoir-foundation interaction, a two-dimensional approach was used including the finite element method, and smeared crack approach. The dam-reservoir interaction is solved by staggered solution procedure while the Sharan boundary condition is applied at the reservoir's far-end truncated boundary. The foundation is defined as a part of the structure and some different boundary conditions such as Lysmer, Boulder and damper boundary conditions are applied at its truncated boundaries. Results show that when the nonlinear analysis includes the dam - foundation interaction and the... 

    A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows

    , Article International Journal of Non-Linear Mechanics ; Volume 47, Issue 6 , 2012 , Pages 626-638 ; 00207462 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of... 

    Preconditioned characteristic boundary conditions for solution of the preconditioned Euler equations at low Mach number flows

    , Article Journal of Computational Physics ; Volume 231, Issue 12 , 2012 , Pages 4384-4402 ; 00219991 (ISSN) Hejranfar, K ; Kamali Moghadam, R ; Sharif University of Technology
    2012
    Abstract
    Preconditioned characteristic boundary conditions (BCs) are implemented at artificial boundaries for the solution of the two- and three-dimensional preconditioned Euler equations at low Mach number flows. The preconditioned compatibility equations and the corresponding characteristic variables (or the Riemann invariants) based on the characteristic forms of preconditioned Euler equations are mathematically derived for three preconditioners proposed by Eriksson, Choi and Merkle, and Turkel. A cell-centered finite volume Roe's method is used for the discretization of the preconditioned system of equations on unstructured meshes. The accuracy and performance of the preconditioned characteristic... 

    A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory

    , Article Acta Mechanica ; Volume 223, Issue 6 , 2012 , Pages 1233-1249 ; 00015970 (ISSN) Asghari, M ; Kahrobaiyan, M. H ; Nikfar, M ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    The geometrically nonlinear governing differential equations of motion and the corresponding boundary conditions are derived for the mechanical analysis of Timoshenko microbeams with large deflections, based on the strain gradient theory. The variational approach is employed to achieve the formulation. Hinged-hinged beams are considered as an important practical case, and their nonlinear static and free-vibration behaviors are investigated based on the derived formulation  

    Three dimensional flow in anisotropic zoned porous media using boundary element method

    , Article Engineering Analysis with Boundary Elements ; Volume 36, Issue 5 , 2012 , Pages 812-824 ; 09557997 (ISSN) Rafiezadeh, K ; Ataie Ashtiani, B ; Sharif University of Technology
    2012
    Abstract
    Coupling the adjacent zones for seepage analysis in porous media needs compatibility and equilibrium equations (equality of potential on coinciding nodes and conservation of flowing mass between zones, respectively). When stretched coordinate transformation is applied to the anisotropic zones, the Dirichlet boundary conditions remain unchanged, but the Neumann boundary condition should also be transformed. Similarly in a zoned problem, for the interface between zones, compatibility equations remain unchanged during the transformation while the equilibrium equations should be transformed. In this paper, transformed Neumann boundary conditions and equilibrium equations for the interface of... 

    A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition

    , Article International Journal for Numerical Methods in Fluids ; Volume 68, Issue 7 , May , 2012 , Pages 905-921 ; 02712091 (ISSN) Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2012
    Abstract
    A modified weakly compressible smoothed particle hydrodynamics (WCSPH) is presented, which utilizes consistent discretization schemes for spatial derivatives in the flow equations. Here, each SPH particle is considered as a computational point that represents a specific part of the fluid. To overcome non-physical oscillations that usually arise in standard WCSPH, we modified the mass conservation equation by using a numerical filter. This modification is based on the difference between two discretization schemes used for the term ∇{dot operator}∇Pρ. Furthermore, a new implementation of wall boundary condition in SPH is introduced. This condition is imposed on the pressure of wall boundary... 

    Geometrically nonlinear micro-plate formulation based on the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 51 , 2012 , Pages 292-309 ; 00207225 (ISSN) Asghari, M ; Sharif University of Technology
    2012
    Abstract
    The couple stress theory is a non-classical continuum theory which is capable to capture size effects in small-scale structures. This property makes it appropriate for modeling the structures in micron and sub-micron scales. The purpose of this paper is the derivation of the governing motion equations and boundary conditions for the geometrically nonlinear micro-plates with arbitrary shapes based on the modified version of the couple stress theory. The consistent boundary conditions are provided at smooth parts of the plate periphery and also at the sharp corners of the periphery using variational approach  

    Three-dimensional elasticity analysis of functionally graded rotating cylinders with variable thickness profile

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 226, Issue 3 , 2012 , Pages 585-594 ; 09544062 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    Abstract
    A three-dimensional elasticity solution for the analysis of functionally graded rotating cylinders with variable thickness profile is proposed. The axisymmetric structure has been divided in several divisions in the radial direction. Constant mechanical properties and thickness profile are assumed within each division. The solution is considered for four different thickness profiles, namely constant, linear, concave, and convex. It is shown that the linear, concave, and convex thickness profiles have smaller stress values compared to a constant thickness profile. The effects of various grading indices as well as different boundary conditions, namely solid, free-free hollow and fixed-free... 

    Free vibration analysis of multilayered composite cylinder consisting fibers with variable volume fraction

    , Article Composite Structures ; Volume 94, Issue 3 , 2012 , Pages 931-944 ; 02638223 (ISSN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    In this paper, free vibration of a fiber reinforced composite cylinder in which volume fraction of its fibers vary longitudinally, is studied using a semi-analytical method. The distribution of volume fraction of fiber in base matrix is based on power law model. A micromechanical model is employed to represent its mechanical properties including elastic and physical properties of this composite cylinder. In addition, kinematically the first order shear deformation shell theory is employed for strain field. Then, weak form formulation and spatial approximations of variables are utilized to discretize the equations of motion. Different problems are solved in which primarily the validity of the... 

    Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass

    , Article Acta Mechanica ; Volume 223, Issue 1 , September , 2012 , Pages 15-27 ; 00015970 (ISSN) Nikkhoo, A ; Rofooei, F. R ; Sharif University of Technology
    2012
    Abstract
    The governing differential equation of motion of a thin rectangular plate excited by a moving mass is considered. The moving mass is traversing on the plate's surface at arbitrary trajectories. Eigenfunction expansion method is employed to solve the constitutive equation of motion for various boundary conditions. Approximate and exact expressions of the inertial effects are adopted for the problem formulation. In the approximate formulation, only the vertical acceleration component of the moving mass is considered while in the exact formulation all the convective acceleration components are included in the problem formulation as well. Parametric studies are carried out to investigate the... 

    Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope

    , Article Applied Mathematical Modelling ; Volume 35, Issue 12 , 2011 , Pages 5903-5919 ; 0307904X (ISSN) Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip-sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The... 

    A modal approach to second-order analysis of sloshing using boundary element method

    , Article Ocean Engineering ; Volume 38, Issue 1 , Volume 38, Issue 1 , 2011 , Pages 11-21 ; 00298018 (ISSN) Firouz Abadi, R. D ; Ghasemi, M ; Haddadpour, H ; Sharif University of Technology
    Abstract
    This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for...