Loading...
Search for: boundary-conditions
0.02 seconds
Total 484 records

    Vibration of a Non-Ideal Simply Supported Euler Bernoulli FG Beam Excited by a Moving Oscillator on Viscoelastic Pasternak Foundation

    , M.Sc. Thesis Sharif University of Technology Gharini, Mohammad (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    In this thesis, the influence of nonideal boundary conditions on the vibration of a functionally graded beam excited by a moving oscillator on Pasternak-type viscoelastic foundation has been investigated. The beam has simply-supported boundary conditions and is assumed that the right-hand-side boundary conditions allows for small deflection, moment and axial force. The beam property gradient is assumed to be in the thickness direction and varies according to the power law distribution. The Hamilton's principle is utilized to obtain the governing equations of motion under the assumptions of Euler-Bernoulli beam theory. The equations of motion of the beam are solved using an... 

    Dynamic Analysis of Timoshenko Beam with Nonuniform Cross Section and Kirchhoff Plate with Nonuniform Thickness Under Moving Mass

    , M.Sc. Thesis Sharif University of Technology Roshandel, Davood (Author) ; Mofid, Massoud (Supervisor)
    Abstract
    In this study dynamic response of Timoshenko beam and rectangular Kirchhoff plate under moving mass are investigated. Applying Hamilton’s principle, governing differential equations of beam and plate are derived considering the effect of moving mass. Afterward, a numerical-analytical solution based on eigen function expansion method for analyzing nonuniform beams and plates by means of beams’ and plates’ free vibration modes is presented and convergence of the solution is proved by proving that the governing differential equations of Timoshenko beam and Kirchhoff plates are self adjoint. Modal orthogonality circumstances are discussed due to their important role in eigen function expansion... 

    Analytical Static and Dynamic Solution of a Mindlin Rectangular Plate under In-Plane Loads Using Fourier Series and Auxiliary Polynomial Functions

    , M.Sc. Thesis Sharif University of Technology Mohammad Esmaeili, Reyhaneh (Author) ; Mofid, Masoud (Supervisor)
    Abstract
    This research presents an innovative analytical solution to static, free vibration and buckling of an isotropic, homogeneous Mindlin plate with uniform thickness. This method satisfies all classical boundary conditions including free, simply supported and clamped as well as non-classical ones. Moreover, Mindlin plates on Winkler foundation of arbitrary stiffness function are investigated. In this study, the deflection and rotation of straight normal line of the plate about x and y axes are represented as the functions of sine and cosine Fourier series, accompanied by auxiliary functions. These auxiliary functions are of great importance because these functions satisfy arbitrary boundary... 

    Multi-scale Analysis of Dislocation Emission for Nano-crystalline Structures

    , M.Sc. Thesis Sharif University of Technology Fattahi Faradonbeh, Mehran (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    In this study, a new multi-scale hierarchical technique has been employed to investigate the role of edge dislocation on nano-plates with hex atomic structure in large deformation. Two multiscale hierarchical atomistic/molecular dynamics (MD)–finite element (FE) coupling methods are proposed to illustrate the influence of temperature on mechanical properties of Magnesium in large deformation. The atomic nonlinear elastic parameters are obtained via computing second-order derivative of Representative atom’s energy and RVE’s strain energy density with respect to deformation criterions (deformation gradient and Green strain tensor) to bridge between atomistic and continuum level, the... 

    Dynamic Behavior Beam and Plate on Foundation under Moving Mass

    , Ph.D. Dissertation Sharif University of Technology Ghannadiasl, Amin (Author) ; Mofid, Massoud (Supervisor)
    Abstract
    The behavior of a beam under moving mass has been always interested in the dynamic of structures. In this study, the dynamic response of beam and plate with general boundary conditions under moving mass were investigated using the Dynamic Green Function. Since the majority of previous studies did not consider the Coriolis acceleration, therefore, this acceleration was used in the present study. Boundary conditions are modeled by the rotational and translational restraint. By moving close to the spring constants of the rotational and translational restraint to extreme values (zero and/or infinity), the boundary conditions can be attained for the desired combinations of end boundary conditions... 

    Interlaminar Stresses Analysis of Spherical Shell with Arbitrary Laminations and Boundary Conditions under Transverse Loads

    , M.Sc. Thesis Sharif University of Technology Feizabadi, Homa (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    Today, composites are widely used in various industries, thus the study and analysis of properties and their behaviors are very important. In addition, the use of multi-layered composites in the aerospace industry is important. The composite-elastomer structures, specially their spherical shape, are widely used as flexible joint in aerospace industries, such as the thrust vector control system in solid-propellant rockets and the helicopter industry. In this study, an analytical approach is proposed for calculating the interlaminar stresses of laminated plates and spherical shells with arbitrary laminations and boundary conditions based on a threedimensional multi-term extended Kantorovich... 

    Non-linear Vibration Analysis of Timoshenko Curved Beam with Non-linear End Supports

    , M.Sc. Thesis Sharif University of Technology Gorbanzadeh Makuei, Behzad (Author) ; Mohammad Navazi, Hossein (Supervisor)
    Abstract
    Three dimensional analyses have been carried out for predicting the behavior of the jointed rock slope of the abutments of the bridge which is proposed to be constructed across the river Karun4 in Iran using 3DEC. The rock overall slope angle is approximately 60 to 70 degrees, composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Since 3DEC is a three-dimensional numerical code, utilizes a Lagrangian calculation scheme to model large movements and deformations of a blocky system, allows for modeling of large movements and rotations, and including complete detachment of rigid or deformable discrete blocks has been utilized for the... 

    Studying the Effect of Thermal Loading on Delamination Phenomenon of Composite Materials using Continuum Damage Mechanics

    , M.Sc. Thesis Sharif University of Technology Teimouri, Hesamoddin (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Metal and inter-metallic matrix composites offer high performance materials suitable for many low weight applications which are of growing interest in high tech industries. However, to submit their entire potential applications, their complex mechanical behavior has to be understood. Nevertheless, one of the major setbacks of designing with these materials has been the delamination phenomenon. So far, this phenomenon has been considered from macro-mechanical point of view regarding laminates to be semi-isotropic or orthotropic; which indicates the importance of micro-mechanical research to be done. Furthermore, the fact that macroscopic response and failure mechanisms of these composites are... 

    The Effect of Dam-Foundation Interaction on The Seismic Behavior of Concrete Gravity Dams Using Semi-Infinite Elements

    , M.Sc. Thesis Sharif University of Technology Abbasnezhad, Hamed (Author) ; Ghaemian, Mohsen (Supervisor) ; Toufigh, Vahab (Supervisor)
    Abstract
    Owing to severe consequences of dams’ failure, studying the seismic behavior of concrete dams with dam-reservoir-foundation interaction consideration is of paramount importance. Several researches have focused their studies on realistic modeling of dams in terms of their dynamic behavior in the past. The nature of dam’s foundation is a semi-infinite continuum which requires the accurate modelling of structure-foundation interaction. Given that simulation of foundation as a semi-infinite continuum is not feasible by finite element, this infinite continuum should be curtailed with specific considerations in the curtailed parts to avoid the reflection of the outgoing waves. An alternative... 

    Effects of Lateral Spreading on Two 2×2 Pile Groups (with and Without Lumped Mass) Using Shaking Table and Laminar Shear Box

    , M.Sc. Thesis Sharif University of Technology Zangeneh, Milad (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Lateral spreading is the downstream movement of mild slopes or free fronts occurring due to soil liquefaction during a dynamic loading such as an earthquake. The magnitude of this movement can be from a few centimeters to tens of meters depending on parameters such as slope length, soil type, cyclic loading intensity, etc. Large displacements caused by this phenomenon can cause severe damage to some structures and infrastructures located in the direction of their movement. Numerous articles and reports of damage caused by the lateral spreading of soil have been presented during several earthquakes. Understanding this phenomenon and observing and testing its effective parameters can help... 

    Dynamic Texture Segmentation in Video Sequences

    , Ph.D. Dissertation Sharif University of Technology Yousefi, Sahar (Author) ; Manzuri Shalmani, Mohammad Taghi (Supervisor)
    Abstract
    Video segmentation means grouping of pixels of the video sequences into spatio-temporal regions which exhibit coherence in both appearance and motion. Due to complexity and spatio-temporal variations, dynamic texture segmentation is a one of the most challenging task in video processing. The problem of dynamic texture segmentation has received considerable attention due to the explosive growth of its applications in video analysis and surveillance systems. In this thesis, two novel approaches have been proposed. The first proposed method is based on generative Dynamic texture models (DTMs) which represent videos as a linear dynamical system. Since DTMs cannot be used for complex videos which... 

    Fluctuations in the order of System Size in the Avalanche-Size Distribution of Sandpiles Model

    , M.Sc. Thesis Sharif University of Technology Saadat, Elaheh (Author) ; Moghimi Araghi, Saman (Supervisor)
    Abstract
    Since the concept of Self-Organized Criticality was introduced in terms of BTW Sandpiles model, its major features have been known as broad power law distributions without any tuning parameters. In some selforganized critical systems like brain and neural networks, some evidences and experiments show a periodic or non-power law distribution of avalanches in addition to the power-law distributions of avalanches. In this thesis we try to observe the same phenomenon in the well-known SOC models, namely the BTW and Manna sandpile models. We have considered small lattice sizes with periodic boundary conditions and a small amount of dissipation. Within such conditions we observe a periodic-like... 

    Developing Advanced Models to Simply Simulate the HRSG of Class F Turbine in Full Scale

    , M.Sc. Thesis Sharif University of Technology Mohammad, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Todays, heat recovery steam generator (HRSG) systems are used extensively in combined power plant cycles (consisting of Rankine cycles and Brighton gas cycle) to maximize their efficiencies. The role of HRSG is essential in providing additional energy needed in the steam cycle part. The HRSG has many pipes or harps. They recover the heat from the incoming gas from the gas turbine outlet, which may be boosted up by the duct burner unit. The main challenge in simulating heat recovery units such as tube bundles is to provide ultra-large and cost-efficient grids. In such situations, alternative models are used to simplify the simulation of the steam generator in full scale, including the... 

    Whirling frequencies of thin spinning cylindrical shells surrounded by an elastic foundation

    , Article Acta Mechanica ; Volume 224, Issue 4 , 2013 , Pages 881-892 ; 00015970 (ISSN) Firouz Abadi, R. D ; Torkaman Asadi, M. A ; Rahmanian, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the whirling frequencies of simply supported and clamped rotating cylindrical shells surrounded by an elastic foundation are investigated. The Love's shell theory is used along with the Winkler foundation to obtain the governing equations of motion. An exact power series solution is obtained for arbitrary boundary conditions and the results are verified with the literature. Several case studies are performed, and the effect of spinning speed, foundation stiffness, and geometrical dimensions of the cylinder on the whirling frequencies are investigated  

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; 2020 Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 2 , 2022 , Pages 509-536 ; 15397734 (ISSN) Shokrgozar, A ; Ghabussi, A ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this study, a cylindrical microshell stability reinforced by graphene nanoplatelets is investigated while an axial load is applied uniformly. In addition, viscoelastic foundation covers the composite nanostructure. Therefore, the impacts of the small scale parameter are studied while nonlocal strain gradient theory (NSGT) is considered. The present research deals for the first time with the consideration of viscoelastic, strain–stress size-dependent parameters along with taking into account of various boundary conditions (BCs), especially C-F ones put into effect on the proposed theory. The governing equations (G.Eqs) and BCs have been obtained utilizing energy method and solved with... 

    Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 322 , 2017 , Pages 615-632 ; 00457825 (ISSN) Shafiei, N ; Mirjavadi, S. S ; MohaselAfshari, B ; Rabby, S ; Kazemi, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This study presents analysis on the vibration behavior of the two-dimensional functionally graded (2D-FG) nano and microbeams which are made of two kinds of porous materials for the first time, based on Timoshenko beam theory. The material of the nano and microbeams is modeled as 2D-FGMs according to the power law. The Eringen's nonlocal elasticity and the modified couple stress theories are used, respectively in case of nano and microbeams. The boundary conditions are considered as clamped (CC), simply supported (SS), clamped–simply supported (CS), and cantilever (CF). The governing equations are solved using the generalized differential quadrature method (GDQM). The effects of FG power... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; 2017 , Pages 1-14 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S. S ; Shafiei, N ; Hamouda, A. M. S ; Davari, E ; Sharif University of Technology
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law... 

    Vibration of rotating functionally graded timoshenko nano-beams with nonlinear thermal distribution

    , Article Mechanics of Advanced Materials and Structures ; Volume 25, Issue 6 , 2018 , Pages 467-480 ; 15376494 (ISSN) Azimi, M ; Mirjavadi, S ; Shafiei, N ; Salem Hamouda, A. M ; Davari, E ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The vibration analysis of rotating, functionally graded Timoshenko nano-beams under an in-plane nonlinear thermal loading is studied for the first time. The formulation is based on Eringen's nonlocal elasticity theory. Hamilton's principle is used for the derivation of the equations. The governing equations are solved by the differential quadrature method. The nano-beam is under axial load due to the rotation and thermal effects, and the boundary conditions are considered as cantilever and propped cantilever. The thermal distribution is considered to be nonlinear and material properties are temperature-dependent and are changing continuously through the thickness according to the power-law... 

    Vibration of beam with elastically restrained ends and rotational spring-lumped rotary inertia system at mid-span

    , Article International Journal of Structural Stability and Dynamics ; 2014 ; ISSN: 02194554 Hozhabrossadati, S. M ; Sani, A. A ; Mofid, M ; Sharif University of Technology
    Abstract
    This technical note addresses the free vibration problem of an elastically restrained Euler–Bernoulli beam with rotational spring-lumped rotary inertia system at its mid-span hinge. The governing differential equations and the boundary conditions of the beam are presented. Special attention is directed toward the conditions of the intermediate spring-mass system which plays a key role in the solution. Sample frequency parameters of the beam system are solved and tabulated. Mode shapes of the beam are also plotted for some spring stiffnesses