Loading...
Search for: bridge
0.016 seconds
Total 214 records

    Use of rubber modification technique to improve fracture-resistance of hoop wound composites

    , Article Materials and Design ; Volume 30, Issue 6 , 2009 , Pages 1976-1984 ; 02641275 (ISSN) Abadyan, M ; Khademi, V ; Bagheri, R ; Haddadpour, H ; Kouchakzadeh, M. A ; Farsadi, M ; Sharif University of Technology
    2009
    Abstract
    Toughness improvement of an epoxy resin and respective hoop wound composite were investigated systematically using amine-terminated butadiene acrylonitrile (ATBN) liquid rubber. Rubber modification improves fracture toughness of epoxy resin with slight reduction in the glass transition temperature (Tg), flexural and compressive properties of resin. Impact resistance of composite is improved by rubber modification similar to modified resin. Interlaminar shear strength (ILSS), compressive modulus and strength, and flexural strength of composite decreased slightly with rubber modification. To interpret the data, the void content of composite samples was determined and the damaged surfaces of... 

    Experimental investigation of life-time performance of unbounded natural rubber bearings as an isolation system in bridges

    , Article Structure and Infrastructure Engineering ; July , 2020 , Pages 1-14 Maghsoudi Barmi, A ; Khaloo, A ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    An experimental research study was carried out to investigate the life-time performance of unbounded Steel Reinforced Elastomeric Bearings (SREB), which are designed and used for service limit state in bridges, subjected to seismic demands. Such behaviour was investigated using 13 full-scale specimens in three phases; (1) effects of long-term service, namely the long term presence of vertical loading at service limit state, on the mechanical properties of the bearings, (2) effects of consecutive shear loading at different amplitude in presence of permanent loading, and (3) post-earthquake behaviour of the bearing against service load conditions. An innovative test setup was utilized in which... 

    Seepage through rockfill dams in narrow valleys

    , Article Proceedings of From Research to Practice in Geotechnical Engineering Congress 2008 - From Research to Practice in Geotechnical Engineering, 9 March 2008 through 12 March 2008, New Orleans, LA ; Volume 325 , 2008 , Pages 522-539 ; 9780784409626 (ISBN) Soleimanbeigi, A ; Jafarzadeh, F ; Sharif University of Technology
    2008
    Abstract
    Seepage analysis serves as one of the most significant stages in the design process of an embankment dam. In two-dimensional (2D) seepage analysis of embankment dams, little or no attention is paid to the seepage through side abutments. Moreover the role of grout curtain extensions into the side abutments and abutment material properties are inevitably neglected when performing a 2D seepage analysis. In this paper, two and three-dimensional (3D) models of a rockfill dam during operation state are generated and several unsteady and steady state seepage analyses are performed using finite element method (FEM). The results obtained from 2D and 3D seepage analyses were compared with measurements... 

    Stochastic fatigue life prediction of Fiber-Reinforced laminated composites by continuum damage Mechanics-based damage plastic model

    , Article International Journal of Fatigue ; Volume 152 , 2021 ; 01421123 (ISSN) Gholami, P ; Farsi, M. A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the evolution of elastic–plastic damage in the composite laminates under fatigue conditions is modeled. Continuum damage mechanics (CDM) has been coupled with the bridge micromechanics model to estimate the fatigue damage and life for laminated composite structures. Based on the elastic–plastic bridging model, three damage variables are defined. These variables estimate the fiber, matrix, and fiber/matrix damage response at the ply scale. To model the beginning of plastic deformation, a yield function is utilized, and evolution equations of the damage variables are obtained. Then the developed deformation plastic model is calculated. The model parameters are calibrated by... 

    Improvement toughness of SiC ceramic by adding Cr2O3 and annealing process

    , Article Journal of the Australian Ceramic Society ; Volume 57, Issue 4 , May , 2021 , Pages 1097-1106 ; 25101560 (ISSN) Khodaei, M ; Yaghobizadeh, O ; Ehsani, N ; Baharvandi, H. R ; Bayati, M. B ; Esmaeeli, S ; Javi, H ; Sharif University of Technology
    Springer  2021
    Abstract
    In this research, the effect of different amounts of Cr2O3 (2.5, 5, 7.5, and 10 wt.%) and sintering temperature (1850, 1900, and 1950 °C) on the sinterability and mechanical properties of liquid-phase sintered SiC-matrix composites was studied. First, raw materials were ground for 3 h using a planetary mill whose rotational speed was 180 rpm. The process of pressing the samples was completed using uniaxial pressing with the applied pressure of 90 MPa. Finally, the samples were sintered under an argon atmosphere at various temperatures for 1.5 h. In the end, the best sintered sample was annealed at 2000°C for 2 h. The phases, microstructure, and chemical composition of the samples were... 

    Generalized State-Plane analysis of bidirectional CLLC resonant converter

    , Article IEEE Transactions on Power Electronics ; 2021 ; 08858993 (ISSN) Rezayati, M ; Tahami, F ; Schanen, J ; Sarrazin, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The CLLC resonant converter is a promising candidate for high efficient, bidirectional power transfer applications such as vehicle-to-grid (V2G) on-board charger and hybrid vehicle DC-DC converter. Nevertheless, the analysis of CLLC still remains challenging because of its complex multi-resonant nature and several storage elements. In this paper, a circuit analysis method based on change of variables is presented that maps the state space equations into two decoupled sets of equations. The analyses are carried out in two state-plane coordinate systems, then the results are mapped onto the original region. The proposed method is then used to thoroughly analyze the CLLC resonant converter... 

    Generalized state-plane analysis of bidirectional CLLC resonant converter

    , Article IEEE Transactions on Power Electronics ; Volume 37, Issue 5 , 2022 , Pages 5773-5785 ; 08858993 (ISSN) Rezayati, M ; Tahami, F ; Schanen, J. L ; Sarrazin, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The CLLC resonant converter is a promising candidate for high efficient, bidirectional power transfer applications, such as vehicle-to-grid on-board charger and hybrid vehicle dc-dc converter. Nevertheless, the analysis of CLLC still remains challenging because of its complex multiresonant nature and several storage elements. In this article, a circuit analysis method based on change of variables is presented that maps the state-space equations into two decoupled sets of equations. The analyses are carried out in two state-plane coordinate systems, then the results are mapped onto the original region. The proposed method is then used to thoroughly analyze the CLLC resonant converter... 

    Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey

    , Article Structural Concrete ; Volume 23, Issue 1 , 2022 , Pages 457-472 ; 14644177 (ISSN) Khaloo, A ; Daneshyar, A ; Rezaei, B ; Fartash, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Fracture process of fiber-reinforced concrete notched beams is investigated here. Polypropylene macrosynthetic fibers are utilized for reinforcing concrete specimens, and a high-strength mix design is used to produce strong bonds between the embossed polypropylene fibers and the cementitious matrix of beams. Considering different locations for the notch, this study focuses on bridging mechanism under different conditions using both experimental and numerical approaches. First mode of fracture occurs due to opening of crack faces. This mode of failure is simulated by imposing symmetric boundary conditions on middle-notched beams. Inducing the notch with an offset from the middle, mixed-mode... 

    Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation

    , Article Remote Sensing of Environment ; Volume 136 , 2013 , Pages 374-385 ; 00344257 (ISSN) Sima, S ; Ahmadalipour, A ; Tajrishy, M ; Sharif University of Technology
    2013
    Abstract
    Remote sensing is an effective tool for capturing spatial and temporal variations of water surface temperature (WST) in large lakes. The WST of Urmia Lake in northwestern Iran was examined from 2007 to 2010, using MODIS land surface temperature (LST) products. Spatial and temporal (diurnal, monthly, seasonal and inter-annual) variations of Urmia Lake WST were also investigated. Results indicate that the MODIS-derived WSTs are in a good agreement with the in situ data (R2=0.92 and bias=-0.27). Spatial analysis of WST revealed that there are three thermal zones along the lake: the shallow region in barriers of the causeway, islands and the shoreline; the south part; and the deep north parts.... 

    Investigating the fracture network effects on sweep efficiency during wag injection process

    , Article Transport in Porous Media ; Volume 93, Issue 3 , July , 2012 , Pages 577-595 ; 01693913 (ISSN) Dehghan, A. A ; Ghorbanizadeh, S ; Ayatollahi, S ; Sharif University of Technology
    2012
    Abstract
    In this study, the main recovery mechanisms behind oil/water/gas interactions during the water-alternating-gas (WAG) injection process, in a network of matrix/fracture, were fundamentally investigated. A visual micromodel was utilized to provide insights into the potential applications of WAG process in fractured oil-wet media as well as the possibility of observing microscopic displacement behavior of fluids in the model. The model was made of an oil-wet facture/matrix network system, comprised of four matrix blocks surrounded with fractures. Different WAG injection scenarios, such as slug arrangements and the effects of fluid injection rates on oil recovery were studied. A new equation... 

    Evaluation of energy-based modal pushover analysis in reinforced concrete frames with elevation irregularity

    , Article Scientia Iranica ; Volume 17, Issue 2 A , 2010 , Pages 96-106 ; 10263098 (ISSN) Hashemi, M. J ; Mofid, M ; Sharif University of Technology
    2010
    Abstract
    In nonlinear static (pushover) methods of analysis as an alternative to time history analysis, the capacity curve of the structure is established with respect to the roof displacement. Disproportionate increases in the roof displacement and even outright reversals of the higher modes can distort the capacity curve of the equivalent single degree of freedom system in these kinds of method, including MPA. To overcome this problem, recently, "Energy-Based" the Modal Pushover Analysis (Energy-Based MPA) method has been introduced. In this method, the absorbed energy and/or the external work in the pushover analysis is considered. Accordingly, the assessment of the Energy-Based MPA method is... 

    Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement

    , Article Transportation Research Record ; Issue 2141 , 2010 , Pages 15-20 ; 03611981 (ISSN) Hosseini, P ; Booshehrian, A ; Farshchi, S ; Sharif University of Technology
    Abstract
    Because of their unique physical and chemical properties, nanoparticles have been gaining increasing attention and have been used in many fields to fabricate new materials with novel functions. If nanoparticles are integrated with cement-based building materials, the new materials might possess some outstanding properties. Ferrocement is a type of thin-wall reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous and relatively small-sized wire mesh. The low level of technical skill required to make ferrocement and the ready availability of its materials make ferrocement suitable for a wide variety of applications. This study... 

    Plug-in hybrid electric vehicle battery charger with soft-switched dual-bridge resonant converter for smart grid applications

    , Article 7th IEEE International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2016, 27 June 2016 through 30 June 2016 ; 2016 ; 9781467386166 (ISBN) Akbari, R ; Ebrahimi, S ; Tahami, F ; Oraee, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Battery chargers are fundamental components for successful deployment of plug-in hybrid electric vehicles (PHEVs) into future smart grid. Recently, an integrated isolated bidirectional battery charger has been proposed for PHEV applications. The proposed charger eliminates the conventional bulky dc-link capacitor by feeding a dual-bridge resonant tank directly from the three-phase grid. The disadvantages associated with the presented charger are the high number of semiconductor switches which contribute to high cost and switching losses of converter as well as complicated control circuitry. In this paper, the previous structure is modified to address the aforementioned drawbacks and is... 

    Stability analysis of arch dam abutments due to seismic loading

    , Article Scientia Iranica ; Volume 24, Issue 2 , 2017 , Pages 467-475 ; 10263098 (ISSN) Mostafaei, H ; Sohrabi Gilani, M ; Ghaemian, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Abutments of concrete arch dams are usually crossed by several joints, which may create some rock wedges. Abutment stability analysis and controlling the probable wedge movements is one of the main concerns in the design procedure of arch dams that should be investigated. For decades, the quasi-static method, due to its simple approach, has been used by most of dam designers. In this study, the dynamic method is presented and the obtained time history of sliding safety factors is compared with the quasi-static results. For this purpose, all three components of Kobe (1979) and Imperial Valley (1940) earthquakes are applied to the wedge, simultaneously, and the magnitude and direction of wedge...