Loading...
Search for: cancerous-cells
0.007 seconds
Total 85 records

    Gingerol/letrozole-loaded mesoporous silica nanoparticles for breast cancer therapy: In-silico and in-vitro studies

    , Article Microporous and Mesoporous Materials ; Volume 337 , 2022 ; 13871811 (ISSN) Akbarzadeh, I ; Saremi Poor, A ; Khodarahmi, M ; Abdihaji, M ; Moammeri, A ; Jafari, S ; Salehi Moghaddam, Z ; Seif, M ; Moghtaderi, M ; Lalami, Z. A ; Heydari, M ; Adelnia, H ; Farasati Far, B ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, in-silico properties of Gingerol (Gin) and Letrozole (Let), as two potential anti-cancer drugs, were investigated and some significant ADME drawbacks were predicted. Accordingly, to address the drawbacks, mesoporous silica nanoparticles (MSNs) were prepared, functionalized with zinc, amine, and graphene oxide (GO) (MZNG), and employed for loading and delivery of the both to breast cancer cells in-vitro. Biophysical analysis showed that Let and Gin-loaded MZNGs have spherical structure with a mean diameter of ∼210 nm. The MZNGs provided high entrapment efficiency of Let and Gin with a pH-sensitive sustained release profile. The cytotoxicity assay demonstrated that loading of... 

    Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells

    , Article Molecular Systems Design and Engineering ; Volume 7, Issue 9 , 2022 , Pages 1102-1118 ; 20589689 (ISSN) Bourbour, M ; Khayam, N ; Noorbazargan, H ; Tavakkoli Yaraki, M ; Asghari Lalami, Z ; Akbarzadeh, I ; Eshrati Yeganeh, F ; Dolatabadi, A ; Mirzaei Rad, F ; Tan, Y. N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Fighting with cancer requires the delivery of different therapeutics to the target cancerous cells by taking advantage of the synergistic effects of complementary medicine. Herein, we present a folate-PEGylated niosome as an efficient nanocarrier for targeted co-delivery of hydrophobic letrozole (L) and hydrophilic ascorbic acid (A) to breast cancer cells. The formulation of the niosomal nanocarrier was optimized by varying the ratio of cholesterol and surfactants to maximize the drug loading and minimize the size of nanocarriers. The optimum drug carriers were further functionalized with folate-PEG molecules to enhance the efficiency of drug delivery to the breast cancer cells and prevent... 

    Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Adel, M ; Zahmatkeshan, M ; Akbarzadeh, A ; Rabiee, N ; Ahmadi, S ; Keyhanvar, P ; Rezayat, S. M ; Seifalian, A. M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities... 

    In silico design of novel anticancer drugs with amino acid and carbohydrate building blocks to inhibit PIM kinases

    , Article Molecular Simulation ; Volume 48, Issue 6 , 2022 , Pages 526-540 ; 08927022 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    PIM-1 is a serine-threonine kinase mainly expressed in tissues like the Thymus, spleen, bone marrow, and liver. Overexpression of PIM kinases occurs in various types of human tumours, such as lymphomas, prostate cancer, and oral cancer. As a result, the design of drugs to inhibit PIM-1 in cancerous cells has attracted much attention in recent years. This study aimed to design the alternative inhibitors for PIM-1 kinase, which are based on carbohydrates and amino acids and are expected to be non-toxic with the same chemotherapeutic effects as the traditional known anticancer drugs. The combinatorial use of quantum mechanics (QM) and molecular dynamic simulation (MD) has enabled us to... 

    Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer

    , Article Materials Today Bio ; Volume 16 , 2022 ; 25900064 (ISSN) Mansoori Kermani, A ; Khalighi, S ; Akbarzadeh, I ; Niavol, F. R ; Motasadizadeh, H ; Mahdieh, A ; Jahed, V ; Abdinezhad, M ; Rahbariasr, N ; Hosseini, M ; Ahmadkhani, N ; Panahi, B ; Fatahi, Y ; Mozafari, M ; Kumar, A. P ; Mostafavi, E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20%...