Loading...
Search for: carbonates
0.02 seconds

    Smartwater flooding in a carbonate asphaltenic fractured oil reservoir - Comprehensive fluidfluid-rock mechanistic study

    , Article 19th European Symposium on Improved Oil Recovery: Sustainable IOR in a Low Oil Price World, IOR NORWAY 2017, 24 April 2017 through 27 April 2017 ; 2017 ; 9789462822092 (ISBN) Mehraban, M. F ; Afzali, S ; Ahmadi, Z ; Mokhtari, R ; Ayatollahi, S ; Sharifi, M ; Kazemi, A ; Nasiri, M ; Fathollahi, S ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2017
    Abstract
    Waterflooding has been regarded as an efficient method for pressure maintenance of oil reservoirs. x Improved techniques such as Smart Water flooding as a new EOR/IOR process has gained more momentum based on the recent research activities in this field and the reduction of oil price. Despite many efforts on achieving the governing mechanisms of Smart Water flooding in many individual fields, most of data are sparse and more possible mechanisms which explains all the interactions yet to be introduced. This experimental study used a systematic laboratory framework which is based on seawater treatments at fixed ionic strength to eliminate the ionic strength effects, NaCl considered as the... 

    Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale

    , Article RSC Advances ; Volume 7, Issue 21 , 2017 , Pages 12923-12930 ; 20462069 (ISSN) Naseri, N ; Solaymani, S ; Ghaderi, A ; Bramowicz, M ; Kulesza, S ; Ţălu, Ş ; Pourreza, M ; Ghasemi, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Nowadays, fossil fuel limitations and environmental concerns push researchers to find clean and renewable energy resources. Solar hydrogen production via water splitting reactions in electrochemical and/or photo-electrochemical systems has been accepted as a promising route and efficient electrocatalysts are involved in both. Here, cobalt nanoflakes with an oxide/hydroxide surface and a conductive metallic core are grown on commercially available steel mesh modified with carbon based nanocomposites as a support layer. The portion of reduced graphene oxide sheets was changed from 0 to 100 wt% and the correlation of this concentration with the surface morphology and electro-catalytic activity... 

    On the catalysis capability of transition metal oxide nanoparticles in upgrading of heavy petroleum residue by supercritical water

    , Article Journal of Supercritical Fluids ; Volume 126 , 2017 , Pages 14-24 ; 08968446 (ISSN) Kosari, M ; Golmohammadi, M ; Ahmadi, S. J ; Towfighi, J ; Heidari Chenari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Vacuum residue cracking has been successfully conducted under supercritical water condition in presence of various metal oxide nanocalysts, namely NiO, CuO, ZnO, Co2O3, and Cr2O3 synthesized at supercritical water. The cracking experiments were carried out at 450 °C. Three species of cracking: maltene, asphaltene, and coke were then weighed and their corresponding speciation was defined. Gas chromatography-mass spectrometry (GC–MS), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), and elemental analysis (CHNS) tests were utilized to prove the performance of upgrading reactions. It was revealed that NiO showed the best performance among other catalyst, in which... 

    Effect of recycle gas on activity and selectivity of Co-Ru/Al2O3 catalyst in fischer- Tropsch synthesis

    , Article World Academy of Science, Engineering and Technology ; Volume 37 , 2009 , Pages 587-591 ; 2010376X (ISSN) Rohani, A. A ; Hatami, B ; Jokar, L ; Khorasheh, F ; Safekordi, A. A ; Sharif University of Technology
    2009
    Abstract
    In industrial scale of Gas to Liquid (GTL) process in Fischer-Tropsch (FT) synthesis, a part of reactor outlet gases such as CO2 and CH4 as side reaction products, is usually recycled. In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol. % of feed) to the feed stream. The effect of temperature and feed flow rate, are also inspected. The results show that low amounts of CO2 in the feed stream, doesn't change the catalyst activity significantly but increasing the amount of CO2 (more than 10 vol. %) cause the CO conversion to decrease and the selectivity of heavy components to increase.... 

    Investigation of Tabas anthracite coal devolatilization: Kinetics, char structure and major evolved species

    , Article Thermochimica Acta ; Volume 654 , 2017 , Pages 74-80 ; 00406031 (ISSN) Toloue Farrokh, N ; Askari, M ; Fabritius, T ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The pyrolysis of low-volatile Tabas anthracite coal was investigated by thermogravimetric technique (TGA) in the temperature range from ambient to 1100 °C under non-isothermal heating conditions (1.5, 3, and 7 °C/min heating rates). Higher heating rates showed a small retarding effect on devolatilization toward higher temperatures. Iso-conversional method was used for the kinetic study of non-isothermal Thermogravimetric data. Activation energy calculated for coal conversion of 20–80% was about 319 kJ/mol which may be a result of stable ordered structure of this type of coal. Analysis of evolved gases by Fourier transform infrared spectrometry (FTIR) in 7 °C/min heating rate was conducted... 

    Study on the morphology and photocatalytic activity of TiO2 nanotube arrays produced by anodizing in organic electrolyte with Ni, Na, and C as dopants

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 12 , 2018 , Pages 3883-3893 ; 14328488 (ISSN) Alitabar, M ; Yoozbashizadeh, H ; Sharif University of Technology
    Abstract
    The main purpose of this research work is to investigate the effect of nickel as metal dopant on the morphology and photocatalytic activity of TiO2 nanotube arrays synthesized in the organic electrolyte by anodizing process containing sodium carbonate as an additive (TNAS). In order to characterize the synthesized nanotubes, various analyses such as FESEM, XRD, FTIR, XPS, DRS, and EIS were applied. The results of XPS and FTIR tests evaluate the participation of sodium (Na), nickel (Ni), and carbon (C) in the lattice of nanotubes as dopants. According to the DRS and UV-visible tests results, the band gap energy of TiO2 nanotube arrays decreases from 3.20 to ~ 2.64 eV as well as the absorption... 

    Effect of the FRP sheet's arrays and NSM FRP bars on in-plane behavior of URM walls

    , Article Journal of Building Engineering ; Volume 20 , 2018 , Pages 679-695 ; 23527102 (ISSN) Jafari, A ; Vatani Oskouei, A ; Bazli, M ; Ghahri, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper studies the results of compression diagonal tests conducted on a series of retrofitted and non-retrofitted small-scale masonry walls (which are also known as wallettes). Wallettes with the same characteristics and mechanical properties of large masonry walls were retrofitted by using two arrays of glass fiber reinforcement polymer (GFRP) sheets (grid and diagonal), two arrays of carbon fiber reinforcement polymer (CFRP) sheets (grid and diagonal), and near surface mounted bars (steel and GFRP). FRP sheets were applied to both surfaces of the wallettes, and rebar was mounted onto one of the surfaces in two horizontal and two vertical arrangements. All of the methods significantly... 

    Minimum miscibility pressure and interfacial tension measurements for N2 and CO2 gases in contact with W/O emulsions for different temperatures and pressures

    , Article Fuel ; Volume 225 , 2018 , Pages 623-631 ; 00162361 (ISSN) Fathinasab, M ; Ayatollahi, S ; Taghikhani, V ; Panahi Shokouh, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this research, the IFT behavior of two different specimens of W/O emulsion with distinctive soluble ingredients of water in contact with CO2 and N2 was examined. The Minimum Miscibility Pressure (MMP) of the mentioned gases with emulsion specimens were measured and compared with the case of the original crude oil with no water content. This study focuses on the quantity of water in the W/O emulsion specimens and its effects on IFT and MMP values. The IFT behavior of W/O emulsions was surveyed for two different cases of distinctive water soluble ingredients, i.e. sea water and reservoir brine. The tests were performed under high pressure-high temperature (HPHT) conditions utilizing... 

    Non-isothermal simulation of the behavior of unsaturated soils using a novel EFG-based three dimensional model

    , Article Computers and Geotechnics ; Volume 99 , 2018 , Pages 93-103 ; 0266352X (ISSN) Iranmanesh, M. A ; Pak, A ; Samimi, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a three-dimensional simulation of fully coupled multiphase fluid flow and heat transfer through deforming porous media is presented in the context of EFG mesh-less method. Spatial discretization of the system of governing equations is performed using EFG and a fully implicit finite difference scheme is employed for temporal discretization. Penalty method is used for imposition of essential boundary conditions. The developed numerical tool is employed to simulate two problems of nuclear waste disposal and CO2 sequestration in deep underground strata. The obtained results demonstrate the capability and robustness of the developed EFG code. © 2018 Elsevier Ltd  

    Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: microstructure and strengthening mechanisms

    , Article Journal of Alloys and Compounds ; Volume 749 , 15 June , 2018 , Pages 121-127 ; 09258388 (ISSN) Pouranvari, M ; Abbasi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper gas tungsten arc welding (GTAW) was applied to dissimilar lap joining of Al6061 and Zn-coated galvanized low carbon steels using Al-5 wt% Si filler metal. The joining mechanism was based on a hybrid brazing/welding mechanism. Three factors contributed to the joint strength including (i) low heat input rate of GTAW process which reduce the intermetallic compound layer growth during joining, (ii) the special role of Si in the filler metal which was able to change the nature of reaction layer from predominantly η-Al5Fe2 phase to predominately less brittle Al-Fe-Si phase and (iii) the flux-like action of Zn-coating which ensures complete wetting of steel surface by Al melt. It was... 

    Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin

    , Article Ceramics International ; 2018 ; 02728842 (ISSN) Rastegar, H ; Bavand vandchali, M ; Nemati, A ; Golestani Fard, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present paper, phase and microstructural characterization of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resins as binder were investigated. Initially, phenolic resin was modified using various amounts of Fe particles as catalyst originated from iron nitrate ([Fe(NO3)3·9H2O]). The MgO-C matrix compositions were prepared by using 7% of modified phenolic resin, shaped and cured at 200 °C for 24 h. The cured samples were coked in the temperature range from 800 to 1400 °C and then characterized by XRD and FE-SEM techniques. Based on attained results, in-situ graphitic carbons, particularly in carbon nanotubes (CNTs) network were gradually formed from Fe-catalyzed... 

    Predicting the rock wettability changes using solutions with different pH, through streaming potential measurement

    , Article Journal of Petroleum Science and Engineering ; Volume 167 , 2018 , Pages 20-27 ; 09204105 (ISSN) Rahbar, M ; Pahlavanzadeh, H ; Ayatollahi, S ; Manteghian, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The high reactivity of the carbonate rocks at various pH makes it difficult to evaluate the wettability, hence to find the recovery mechanisms behind modified waterflood in carbonate reservoirs. More recently, the streaming potential measurement is introduced as a method of electrokinetic phenomena more relevant to the subsurface systems. Regarding few experimental studies and in order to improve our understanding on streaming potential measurement, the electrokinetic studies on quartz and calcite surface were conducted as a function of pH in the range of 1.5–11.5 using an in-house novel setup of streaming potential measurement. High sensitivity of streaming potential coupling coefficient to... 

    Synergistic strengthening by severe plastic deformation and post-heat treatment of a low-carbon steel

    , Article Steel Research International ; Volume 89, Issue 6 , 2018 ; 16113683 (ISSN) Soleimani, F ; Kazeminezhad, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Low-carbon steel sheets are severely plastic deformed to strains of up to ≈3.48 and subsequently heat treated by conventional annealing followed by water-quenching. Four temperatures are chosen for the annealing below and over the Ac1 and Ac3 transformation lines. The effects of post-deformation heat treatment are investigated by evaluating the microstructure and mechanical properties, including strength, ductility, work hardening capability, and hardness. A maximum increase of 86% in the strength is obtained through intercritical annealing and quenching of the samples subjected to strain of 1.16. It is interesting that both the elongation and ultimate tensile strength values are higher... 

    Technical, economic and environmental optimization of combined heat and power systems based on solid oxide fuel cell for a greenhouse case study

    , Article Energy Conversion and Management ; Volume 164 , 2018 , Pages 144-156 ; 01968904 (ISSN) Roshandel, R ; Golzar, F ; Astaneh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The aim of this paper is to investigate the application of solid oxide fuel cell (SOFC) as the prime mover of a combined heat and power (CHP) system. In this paper, four hybrid systems are proposed to improve the performance of CHP and compare with baseline condition. Capacity design and operation strategy of hybrid systems are applied to a case study of a greenhouse located in Mahabad, Iran and optimized by using technical, economic and environmental objective functions. Levelized cost of energy (LCOE) and CO2 emission rate are considered as the objective functions. For LCOE optimization, three scenarios are considered to evaluate the impacts of future energy prices and CO2 tax. In scenario... 

    Thermoeconomic analysis and optimization of post-combustion CO2 recovery unit utilizing absorption refrigeration system for a natural-gas-fired power plant

    , Article Environmental Progress and Sustainable Energy ; Volume 37, Issue 3 , 2018 , Pages 1075-1084 ; 19447442 (ISSN) Shirmohammadi, R ; Soltanieh, M ; Romeo, L. M ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Exergy and exergoeconomic analyses have been used to set out weaknesses of the postcombustion CO2 capture unit of Besat power plant that uses an ammonia absorption refrigeration system for CO2 liquefaction. The energy required for the absorption system is provided by the flue gas. The liquefied CO2 is used for beverage and food industries. The exergoeconomic costs of all utility streams and processes are calculated through a systematic method of assigning exergetic cost relations to the streams. The results point out that the exergy destruction of the CO2 stripper and absorber columns are the highest, and according to the cost-based information, potential locations for the process... 

    A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II)

    , Article Sensors and Actuators, B: Chemical ; Volume 259 , 2018 , Pages 894-899 ; 09254005 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A new strategy has been proposed to expand color-tunability of ratiometric fluorescent probes. It was shown that the combination of blue emissive color (as an internal standard) and yellow emissive color (as a probe) is an efficient way to create an extensive color range in ratiometric probes. However, due to the nature of the interaction between the analyte and the probe in terms of fluorescence quenching, occurance of the redshift in the emission is the major provision of such a probe. Our developed ratiometric fluorescence probe consists of blue emissive carbon dots (BCDs) and thioglycolic acid (TGA)-capped yellow emissive cadmium telluride (CdTe) quantum dots (YQDs). The ratiometric... 

    Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production

    , Article Journal of Cleaner Production ; Volume 180 , 2018 , Pages 655-665 ; 09596526 (ISSN) Shahhosseini, H. R ; Iranshahi, D ; Saeidi, S ; Pourazadi, E ; Klemeš, J. J ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This work proposes a novel configuration for steam methane reformers (SMR) in order to improve their syngas stoichiometric ratio (SR). This is a decisive element for methanol producers to increase their production tonnage. While the optimum theoretical SR value is around 2, many conventional SMRs operate far beyond this value due to thermodynamic equilibrium limitations. In the new SMR design CO2, which could be an industrial off gas, is injected into the reactor in multiple stages. The corresponding CO2 injection flow rate is determined by a multi-objective optimization method. The optimum flow rate at each stage is chosen to minimise abs (SR-2) while maintaining the CH4 conversion at its... 

    Analytical and molecular dynamics simulation approaches to study behavior of multilayer graphene-based nanoresonators incorporating interlayer shear effect

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 2 , 2018 ; 09478396 (ISSN) Nikfar, M ; Asghari, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Analytical and molecular dynamics simulation approaches are used in this paper to study free-vibration behavior of multilayer graphene-based nanoresonators considering interlayer shear effect. According to experimental observations, the weak interlayer van der Waals interaction cannot maintain the integrity of carbon atoms in the adjacent layers. Hence, it is vital that the interlayer shear effect is taken into account to design and analyze multilayer graphene-based nanoresonators. The differential equation of motion and the general form of boundary conditions are first derived for multilayer graphene sheets with rectangular shape using the Hamilton’s principle. Then, by pursuing an... 

    A new approach to characterize the performance of heavy oil recovery due to various gas injection

    , Article International Journal of Multiphase Flow ; Volume 99 , 2018 , Pages 273-283 ; 03019322 (ISSN) Rostami, B ; Pourafshary, P ; Fathollahi, A ; Yassin, M. R ; Hassani, K ; Khosravi, M ; Mohammadifard, M ; Dangkooban, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The performance of CO2 injection into a semi-heavy oil reservoir was investigated at reservoir conditions, using highly permeable sandstone in a complete series of PVT tests and coreflooding experiments. Analysis of involved parameters such as: injection rate, injectant type and reservoir pressure were also considered. Oil viscosity reduction and oil swelling are the most influential mechanisms of enhanced oil recovery in this process. The results demonstrated that CO2 injection would decrease the interfacial tension for the high permeable medium in the absence of capillarity, but this reduction may not improve the recovery drastically. One of the main important aspects of this work is the... 

    Application of ANFIS-PSO algorithm as a novel method for estimation of higher heating value of biomass

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 40, Issue 3 , 1 February , 2018 , Pages 288-293 ; 15567036 (ISSN) Suleymani, M ; Bemani, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    One of the important parameters in economic study of energy sources and bioenergy is higher heating value (HHV). In this investigation, adaptive neuro fuzzy inference system (ANFIS) was applied as a novel method to predict HHV of biomass in terms of fixed carbon (FC), ash content (ASH), and volatile matters (VMs). Due to the fact that experimental investigations are time- and cost-consuming, this investigation was selected purely computational and a total number of 350 experimental data were extracted from literature for different steps of modeling. The proposed algorithm was evaluated by statistical indexes such as coefficient of determination (R2), root mean squared error (RMSE), and...