Loading...
Search for: carbonation
0.025 seconds
Total 2074 records

    A multi-scale model for determining the effects of pathophysiology and metabolic disorders on tumor growth

    , Article Scientific Reports ; Volume 10, Issue 1 , 20 February , 2020 Nikmaneshi, M. R ; Firoozabadi, B ; Mozafari, A ; Munn, L. L ; Sharif University of Technology
    Nature Research  2020
    Abstract
    The search for efficient chemotherapy drugs and other anti-cancer treatments would benefit from a deeper understanding of the tumor microenvironment (TME) and its role in tumor progression. Because in vivo experimental methods are unable to isolate or control individual factors of the TME and in vitro models often do not include all the contributing factors, some questions are best addressed with systems biology mathematical models. In this work, we present a new fully-coupled, agent-based, multi-scale mathematical model of tumor growth, angiogenesis and metabolism that includes important aspects of the TME spanning subcellular-, cellular- and tissue-level scales. The mathematical model is... 

    Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor

    , Article Bioresource Technology ; Volume 100, Issue 5 , 2009 , Pages 1740-1745 ; 09608524 (ISSN) Ghaniyari Benis, S ; Borja, R ; Monemian, S. A ; Goodarzi, V ; Sharif University of Technology
    2009
    Abstract
    A laboratory-scale multistage anaerobic biofilm reactor of three compartments with a working volume of 54-L was used for treating a synthetic medium-strength wastewater containing molasses as a carbon source at different influent conditions. The start-up period, stability and performance of this reactor were assessed at mesophilic temperature (35 °C). During the start-up period, pH fluctuations were observed because there was no microbial selection or zoning, but as the experiment progressed, results showed that phase separation had occurred inside the reactor. COD removal percentages of 91.6, 91.6, 90.0 and 88.3 were achieved at organic loading rates of 3.0, 4.5, 6.75 and 9.0 kg COD/m3 day,... 

    Analyses of mass and heat transport interactions in a direct methanol fuel cell

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , p. 11224-11240 ; ISSN: 03603199 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, non-isothermal model is presented to predict the electrochemical, mass transfer and heat transfer behaviors in a direct methanol fuel cell (DMFC). Governing equations including the momentum, continuity, heat transfer, proton and electron transport, species transport for water, methanol, and all the gas species (carbon dioxide, methanol vapor, water vapor, oxygen, and nitrogen) and the auxiliary equations are coupled to studying the various phenomena in DMFC. The modeling results agree well with the four different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine the effects of the cell... 

    Analysis of mechanical and thermal properties of carbon and silicon nanomaterials using a coarse-grained molecular dynamics method

    , Article International Journal of Mechanical Sciences ; Volume 187 , December , 2020 Mohammadi, K ; Ali Madadi, A ; Bajalan, Z ; Nejat Pishkenari, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The main concern in Molecular Dynamics (MD) simulations is the computational cost, and coarse-graining methods accelerate simulations by reducing the degrees of freedom in the system. Yet, the utilization of these methods should be carefully followed. In this paper, we presented an energy-based coarse-graining method for Tersoff and Stillinger-Weber potential functions. The presented coarse-graining method is based on the domain mapping and modification of potential function. The focus of this paper is on Carbon and Silicon materials; however, this method can be applied to model other materials for which Tersoff and Stillinger-Weber potentials are defined. This method has been validated by... 

    Analysis of pull-in instability of electrostatically actuated carbon nanotubes using the homotopy perturbation method

    , Article Journal of Mechanics of Materials and Structures ; Volume 8, Issue 8-10 , 2013 , Pages 385-401 ; 15593959 (ISSN) Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    This paper analyzes the deflection and pull-in behaviors of cantilever and doubly clamped carbon nanotubes (CNTs) under electrostatic actuation using the homotopy perturbation method. The effects of electrostatic force and interatomic interactions on the deflection and pull-in instabilities of CNTs with different lengths, diameters, and boundary conditions are investigated in detail. The results reveal that larger diameters and shorter lengths result in higher pull-in voltages. Moreover, CNTs with doubly clamped boundary conditions, in comparison with cantilever boundary conditions, are more resistant to pull-in  

    Analysis of resistance spot welding process parameters effect on the weld quality of three-steel sheets used in automotive industry: Experimental and finite element simulation

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 1 , 2020 , Pages 148-157 Farrahi, G. H ; Reza Kashyzadeh, K ; Minaei, M ; Sharifpour, A ; Riazi, S ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    In the present research, the effects of spot-welding process parameters on the nugget diameter and electrode penetration depth of spot-welded joints were investigated. To achieve this, a spot-welded joint of three-thin sheet low carbon steels (same thicknesses of 0.8 mm) was simulated as an electerical-thermal-mechanical coupling of 3D finite element model. After validating the finite element simulation presented in this study by comparison with the experimental results for the spot diameter, various cases of spot welds were analyzed based on the design on experiment (i.e., Taguchi method). Six variables including electrode force, electric current, and quadrilateral times (squeeze, up-slope,... 

    Analytical and molecular dynamics simulation approaches to study behavior of multilayer graphene-based nanoresonators incorporating interlayer shear effect

    , Article Applied Physics A: Materials Science and Processing ; Volume 124, Issue 2 , 2018 ; 09478396 (ISSN) Nikfar, M ; Asghari, M ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Analytical and molecular dynamics simulation approaches are used in this paper to study free-vibration behavior of multilayer graphene-based nanoresonators considering interlayer shear effect. According to experimental observations, the weak interlayer van der Waals interaction cannot maintain the integrity of carbon atoms in the adjacent layers. Hence, it is vital that the interlayer shear effect is taken into account to design and analyze multilayer graphene-based nanoresonators. The differential equation of motion and the general form of boundary conditions are first derived for multilayer graphene sheets with rectangular shape using the Hamilton’s principle. Then, by pursuing an... 

    Analytical and semi-analytical kinetics models for design and optimization of double-resistance resin in pulp and carbon in pulp processes with both reversible and irreversible nature

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 11 , 2018 , Pages 2461-2474 ; 00084034 (ISSN) Naderi, A ; Outokesh, M ; Ahmadian Koudakan, P ; Ghoddocynejad, D ; Saberyan, K ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    The current study was aimed at developing a package of “model + algorithm” for the design of resin in pulp (RIP) and carbon in pulp (CIP) processes of gold, uranium, and base metals. For this purpose, we first formulated a double-resistance model for irreversible adsorption (accompanied by chemical reaction) in CSTRs, and modified the McKay et al. semi-analytical model for reversible uptake in a similar system. We then devised two algorithms for the design and optimization of reversible and irreversible RIP and CIP cascades. The developed algorithms were applied on the extraction of copper, uranium, and gold. The packages are able to specify the optimum number of stages, reactor volume (V),... 

    An analysis of carbone monoxide distribution in large tunnel fires

    , Article Journal of Mechanical Science and Technology ; Vol. 28, Issue. 5 , 2014 , pp. 1917-1925 ; ISSN: 1738494X Sojoudi, A ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    Abstract
    Fire events and the related toxicants such as CO are responsible for many fatalities in the current century. These hazardous events are much more dangerous when they occur in enclosed spaces. In the present study, a theoretical relation is developed for horizontal distribution of CO in a large tunnel fire. Then, the developed criterion is used to study the effect of some rudimentary parameters such as the heat release rate (HRR) of fire and tunnel's aspect ratio (AR) on CO and temperature stratification. Theoretical results of various heat release rates and aspect ratios for horizontal distribution of CO are compared with numerical results using fire dynamics simulator (FDS5.5). It is found... 

    A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications

    , Article Nanoscale ; Volume 10, Issue 5 , February , 2018 , Pages 2492-2502 ; 20403364 (ISSN) Abbasi Moayed, S ; Golmohammadi, H ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    In the present study, a ratiometric fluorescent sensor array as an artificial tongue has been developed on a nanopaper platform for chemical discrimination applications. The bacterial cellulose (BC) nanopaper was utilized for the first time as a novel, flexible, and transparent substrate in the optical sensor arrays for developing high-performance artificial tongues. To fabricate this platform, the hydrophobic walls on the BC nanopaper substrates were successfully created using a laser printing technology. In addition, we have used the interesting photoluminescence (PL) properties of an immobilized ratiometric probe (carbon dot-Rhodamine B (CD-RhB) nanohybrids) on the nanopaper platform to... 

    An approach to defining tortuosity and cementation factor in carbonate reservoir rocks

    , Article Journal of Petroleum Science and Engineering ; Volume 60, Issue 2 , 2008 , Pages 125-131 ; 09204105 (ISSN) Hassanzadeh Azar, J ; Javaherian, A ; Pishvaie, M. R ; Nabi Bidhendi, M ; Sharif University of Technology
    2008
    Abstract
    Tortuosity and cementation factor are two critical parameters that significantly affect estimates of reservoir properties. Tortuosity factor can be used to estimate permeability using the Carman-Kozeny equation and is an important parameter for formation resistivity factor calculation using a modified version of Archie's formula. It is also used to predict water saturation of reservoir rocks. Tortuosity as an input parameter in Biot's equation can be used to estimate velocity dispersion. In this work, based on the Generalized Archie Equation Curve Fitting (GAECF), tortuosity and cementation factor are determined for selected intervals in a carbonate reservoir. Formation resistivity factor... 

    An approach to targeting cryptocurrency mining loads for energy efficiency enhancement

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 23 , 2022 , Pages 4775-4790 ; 17518687 (ISSN) Hajiaghapour Moghimi, M ; Azimi Hosseini, K ; Hajipour, E ; Vakilian, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In recent years, the mining of cryptocurrencies such as Bitcoin has attracted much global attention due to the simplicity and high profitability of this business, especially in countries with low electricity rates. The process of cryptocurrency mining using cryptocurrency mining devices requires a significant amount of computing power. This industry, which is increasingly growing in energy and carbon emissions, can cause environmental concerns. Common ways to reduce this amount of energy consumption are to prohibit mining and charge these loads at a higher electricity rate; however, these solution methods are not feasible and applicable in many countries. This paper presents an energy... 

    An atomistic insight into the implications of ion-tuned water injection in wetting preferences of carbonate reservoirs

    , Article Journal of Molecular Liquids ; Volume 293 , 2019 ; 01677322 (ISSN) Koleini, M.M ; Badizad, M. H ; Ghatee, M. H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The efficiency of water flooding methods is known to improve by applying ion-tuned water injection. Although there is a consensus that such improvement happens through reversing reservoir wettability characteristics to more water-wet state, the true impact of ions is still ambiguous among contradictory debates. The well-known molecular dynamics (MD) simulation techniques would shed light on such ambiguities to gain deep atomic-scale understanding of the process. Results from MD simulations show that the presence of Na+ and Cl¯ ions leads to the formation of an electrical double layer in adjacency of calcite surface while Mg2+ ions dominantly make complexes with hydrocarbons throughout the... 

    An efficient one-pot Michael addition of dithiocarbamate anion to α,β-unsaturated olefins mediated by lithium perchlorate

    , Article Journal of Sulfur Chemistry ; Volume 26, Issue 2 , 2005 , Pages 149-153 ; 17415993 (ISSN) Ziyaei-Halimjani, A ; Saidi, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2005
    Abstract
    The reaction of substituted dithiocarbamates with electrophilic alkenes in the presence of LiClO4 was investigated in an attempt to prepare numerous ethyl dithiocarbamates bearing β-electron-withdrawing-group substituents. The reaction conditions are mild, neutral, with extremely simple work-up procedures, and offer high yield. © 2005 Taylor & Francis Group Ltd  

    An efficient two-step approach for improvement of graphene aerogel characteristics in preparation of supercapacitor electrodes

    , Article Journal of Energy Storage ; Volume 17 , 2018 , Pages 465-473 ; 2352152X (ISSN) Jokar, E ; Shahrokhian, S ; zad, A. I ; Asadian, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    We fabricated a high rate capability supercapacitor based on fluorine-doped graphene-carbon nanotubes aerogel network (G-CNT-F). Based on the electrochemical impedance spectroscopy data, the fluorination decreases the charge transfer resistance of graphene sheets, while CNTs act as spacer in the 3D structure. Therefore, both treatments improved the electrochemical properties of the resulted aerogel. Based on the Fourier transform infrared spectroscopy and XPS results, these excellent performances are attributed to semi-ionic bonds between fluorine and carbon. The specific capacitance of the graphene aerogel showed 78% decrease, when discharge current increases from 2 to 40 mA, while the... 

    An electrochemical sensing platform based on nitrogen-doped hollow carbon spheres for sensitive and selective isoprenaline detection

    , Article Journal of Electroanalytical Chemistry ; Volume 847 , 2019 ; 15726657 (ISSN) Shahrokhian, S ; Panahi, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this work, uniform and monodisperse hollow carbon spheres (HCSs) are synthesized through two different processes using polydopamine (PDA), as a carbon precursor, and silica core as a template, under the modified Stöber condition. The surface morphology of the synthesized structures is characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier-transform infrared spectroscopy (FT-IR). In the next step, the electrochemical behavior of isoprenaline (ISPN) is investigated by using glassy carbon electrode modified with a thin film of the synthesized hollow carbon spheres. The electrochemical characterization of the modified electrodes is... 

    An emission inventory update for Tehran: The difference between air pollution and greenhouse gas source contributions

    , Article Atmospheric Research ; Volume 275 , 2022 ; 01698095 (ISSN) Shahbazi, H ; Abolmaali, A. M ; Alizadeh, H ; Salavati, H ; Zokaei, H ; Zandavi, R ; Torbatian, S ; Yazgi, D ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Many highly populated cities are still struggling to reach clean air targets, while the zero greenhouse gas emission objectives may accelerate the path toward healthy air for all. Still, there is a fine line between intensive electrification's impact on greenhouse gas emissions and criteria air contaminants depending on the source of the electricity. In this study, the previous version of the emission inventory for Tehran was evaluated and re-calculated in a detailed bottom-up approach to provide the most updated data on the contribution of stationary sources derived by power plants vs. mobile sources. The objectives were to update the emission inventory for improved policymaking, study the... 

    An enhanced continuum modeling of the ideal strength and the angle of twist in tensile behavior of single-walled carbon nanotubes

    , Article Journal of Applied Physics ; Volume 114, Issue 5 , 2013 ; 00218979 (ISSN) Delfani, M. R ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    By utilizing the fourth-, sixth-, eighth-, and tenth-order elastic moduli tensors of graphene a highly nonlinear constitutive model for it is proposed. Subsequently, an accurate analytical formulation, describing the entire tensile behavior of single-walled carbon nanotubes (SWCNTs) from their initial unloaded states through their ideal strengths, is made possible. The angle of twist which is a critical parameter that varies with the tensile loading is also calculated within the current framework. The estimated value of the theoretical strength of SWCNTs with different chiralities and radii as well as that of graphene ranges from 0.39 to 0.44 TPa. Some peculiarities associated with chirality... 

    A new and facile synthesis of thieno[2,3-b]indole derivatives via condensation of isocyanide and indolin-2-thiones

    , Article Synlett ; Issue 7 , 2009 , Pages 1047-1050 ; 09365214 (ISSN) Matloubi Moghaddam, F ; Saeidian, H ; Mirjafary, Z ; Taheri, S ; Kheirjou, S ; Sharif University of Technology
    2009
    Abstract
    A new one-pot synthesis of thieno[2,3-b]indole ring systems is described. Condensation of cyclohexyl isocyanide with indolin-2-thiones yielded 3-cyclohexyaminomethylene-indolin-2-thiones, which upon reaction with α-halocarbonyl compounds produced the title compounds. © Georg Thieme Verlag Stuttgart  

    A new approach to characterize the performance of heavy oil recovery due to various gas injection

    , Article International Journal of Multiphase Flow ; 2017 ; 03019322 (ISSN) Rostami, B ; Pourafshary, P ; Fathollahi, A ; Yassin, M. R ; Hassani, K ; Khosravi, M ; Mohammadifard, M ; Dangkooban, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The performance of CO2 injection into a semi-heavy oil reservoir was investigated at reservoir conditions, using highly permeable sandstone in a complete series of PVT tests and coreflooding experiments. Analysis of involved parameters such as: injection rate, injectant type and reservoir pressure were also considered. Oil viscosity reduction and oil swelling are the most influential mechanisms of enhanced oil recovery in this process. The results demonstrated that CO2 injection would decrease the interfacial tension for the high permeable medium in the absence of capillarity, but this reduction may not improve the recovery drastically. One of the main important aspects of this work is the...