Loading...
Search for: cell-membrane
0.01 seconds

    Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 2 , 2019 , Pages 1413-1422 ; 21900558 (ISSN) Iraji, S ; Ayatollahi, S ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Asphaltene precipitation is known to be responsible for serious challenges in oil industry such as wellbore damage, oil flow reduction, and plugging of transportation lines. The traditional methods to remove asphaltene deposition are mostly based on chemical solvent. One of the recent proposed green and cost–effect remedial methods is the application of microorganisms capable of consuming the heavy hydrocarbon chains. The cell surface hydrophobicity among others effectively manipulates the efficiency of the microorganism for asphaltene degradation. Besides, surface active agents would affect the microorganism adhesion and cell surface properties, and alters its hydrophobicity. Investigating... 

    Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method

    , Article Journal of Physical Chemistry C ; Volume 112, Issue 47 , 2008 , Pages 18686-18689 ; 19327447 (ISSN) Hosseini, Z ; Taghavinia, N ; Sharifi, N ; Chavoshi, M ; Rahman, M ; Sharif University of Technology
    2008
    Abstract
    TiO2 deposited on a membrane of Ag fibers was prepared as a photoelectrochemical cell electrode. Ag fibers were made by reduction of Ag complexes on cellulose fibers, followed by burning out the template. TiO 2 photocatalyst layers were grown on the fibers by electrophoretic deposition of TiO2 nanoparticles. Ag fibers could be uniformly deposited. Photocatalytic tests by dye decomposition and electrochemical impedance spectroscopy (EIS) under UV illumination demonstrate that Ag fibers act as a good substrate that provides both high surface area and good separation of photogenerated electron-hole pairs and causes the enhancement of photocatalytic activity in comparison with a thin film of... 

    New blend nanocomposite membranes based on PBI/sulfonated poly(ether keto imide sulfone) and functionalized quantum dot with improved fuel cell performance at high temperatures

    , Article International Journal of Energy Research ; Volume 45, Issue 15 , August , 2021 , Pages 21274-21292 ; 0363907X (ISSN) Hooshyari, K ; Rezania, H ; Vatanpour, V ; Rastgoo Deylami, M ; Rajabi, H. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this work, we reported the synthesis of a sulfonated poly(ether keto imide sulfone) (SPEKIS) using a novel aromatic diol containing nitrogen heterocycles and sulfonic monomer. New nanocomposite blend membranes were prepared using obtained SPEKIS and polybenzimidazole (PBI) with the incorporation of zinc sulfide (ZnS) functionalized quantum dots (FQDs) having both -COOH and NH2 groups with a solution-casting method and were used as proton exchange membranes. The SPEKIS and ZnS FQDs were used for the first time in the preparation of new nanocomposite blend membranes based on PBI. The purpose of this study is to investigate the effect of SPEKIS and ZnS FQDs on the PBI membrane performance in... 

    Comparison of statistical and MCDM approaches for flood susceptibility mapping in northern Iran

    , Article Journal of Hydrology ; Volume 612 , 2022 ; 00221694 (ISSN) Mousavi, S. M ; Ataie Ashtiani, B ; Hosseini, S. M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Accurate mapping of flood risk areas is the basis for providing basic information on flood hazard reduction strategies and facilitates the relocation process. This study compared statistical approaches and multi-criteria-decision-making (MCDM) in flood hazard susceptibility mapping (FHSM). The performance of two statistical methods, the Evidential Belief Function (EBF) and Weight of Evidence (WOE), was compared with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) as an MCDM technique. Mohammad-Abad catchment, known as one of the flood susceptible areas in northern Iran, was selected as a case study. A 100-year flood event with a peak flow of 85 m3/s, known as... 

    Developing an electro-thermal model to determine heat generation and thermal properties in a lithium-ion battery

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 147, Issue 21 , 2022 , Pages 12253-12267 ; 13886150 (ISSN) Mahboubi, D ; Jafari Gavzan, I ; Saidi, M. H ; Ahmadi, N ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Lithium-ion batteries should continuously be operated at the optimum temperature range (15∼40∘C) for the best performance. Surface temperature monitoring is critical for the safe and efficient operation of the battery. In this study, initially, the electrical parameters of the battery are determined by applying a second-order equivalent circuit model. This model then is integrated with a thermal model based on the temperature dependent behavior of the electrical parameters and the heat generated. The input parameters to the electro-thermal model include the current, the ambient fluid temperature and the output parameters include the terminal voltage, state of charge, cell core temperature... 

    Thermodynamic analysis of a photovoltaic thermal system coupled with an organic Rankine cycle and a proton exchange membrane electrolysis cell

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 41 , 2022 , Pages 17894-17913 ; 03603199 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, the performance of a Photovoltaic Thermal-Organic Rankine Cycle (PVT-ORC) system combined with a Proton Exchange Membrane Electrolysis Cell (PEMEC) is investigated. A combined numerical/theoretical model of the system is developed and used to evaluate the effect of various system design parameters. In addition, the effects of using water, ethylene glycol, and a mixture of water and ethylene glycol (50/50) as the working fluid of the PVT system and R134a, R410a, and R407c as the working fluid of the ORC cycle on the performance of the PVT-ORC-PEMEC system are studied. Based on the results, R134a and water demonstrated the best performance as the working fluid of the ORC and PVT... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Nanomechanical properties of lipid bilayer: Asymmetric modulation of lateral pressure and surface tension due to protein insertion in one leaflet of a bilayer

    , Article Journal of Chemical Physics ; Volume 138, Issue 6 , 2013 ; 00219606 (ISSN) Maftouni, N ; Amininasab, M ; Ejtehadi, M. R ; Kowsari, F ; Dastvan, R ; Sharif University of Technology
    2013
    Abstract
    The lipid membranes of living cells form an integral part of biological systems, and the mechanical properties of these membranes play an important role in biophysical investigations. One interesting problem to be evaluated is the effect of protein insertion in one leaflet of a bilayer on the physical properties of lipid membrane. In the present study, an all atom (fine-grained) molecular dynamics simulation is used to investigate the binding of cytotoxin A3 (CTX A3), a cytotoxin from snake venom, to a phosphatidylcholine lipid bilayer. Then, a 5 ms coarse-grained molecular dynamics simulation is carried out to compute the pressure tensor, lateral pressure, surface tension, and first moment... 

    A possible anticancer drug delivery system based on carbon nanotube-dendrimer hybrid nanomaterials

    , Article Journal of Materials Chemistry ; Volume 21, Issue 39 , 2011 , Pages 15456-15463 ; 09599428 (ISSN) Mehdipoor, E ; Adeli, M ; Bavadi, M ; Sasanpour, P ; Rashidian, B ; Sharif University of Technology
    2011
    Abstract
    Iron oxide nanoparticles, γ-Fe2O3NP, were deposited onto the surface of multi-walled carbon nanotubes and CNT/γ-Fe2O3NP hybrid nanomaterials were obtained. Then linear-dendritic ABA type block copolymers consisting of polyethylene glycol as B block and poly(citric acid) as A block, PCA-PEG-PCA, were synthesized and cisplatin (cis-diamminedichloroplatinum (CDDP) - a platinum-based chemotherapy drug) was conjugated with their carboxyl functional groups and CDDP/PCA-PEG-PCA anticancer prodrugs were prepared. Noncovalent interactions between CDDP/PCA-PEG-PCA anticancer prodrugs and CNT/γ-Fe2O3NP hybrid nanomaterials led to CDDP/PCA-PEG-PCA/CNT/γ-Fe2O3NP drug delivery systems. There are several... 

    Optimum groove pressing die design to achieve desirable severely plastic deformed sheets

    , Article Materials and Design ; Volume 31, Issue 1 , 2010 , Pages 94-103 ; 02641275 (ISSN) Kazeminezhad, M ; Hosseini, E ; Sharif University of Technology
    2010
    Abstract
    In this paper, considering the problems of common finite element (FE) codes that consider simple constitutive equations, a developed FE code that considers a new constitutive model is used to simulate the behavior of copper sheets under severe plastic deformation (SPD). The new proposed constitutive model, that considers dislocation densities in cell interiors and cell walls of material as true internal state variables, can investigate all stages of flow stress evolution of material during large plastic deformations and also can explain the effects of strain rate magnitude on the mechanical response of material, during room temperature SPD. The proposed FE analysis is used to investigate the... 

    Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode

    , Article Biosensors and Bioelectronics ; Volume 79 , 2016 , Pages 327-333 ; 09565663 (ISSN) Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104Wm-3 was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    An analytical model for soft error critical charge of nanometric SRAMs

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 17, Issue 9 , 2009 , Pages 1187-1195 ; 10638210 (ISSN) Jahinuzzaman, S. M ; Sharifkhani, M ; Sachdev, M ; Sharif University of Technology
    2009
    Abstract
    Scaling transistor size to the scale of the nanometer coupled with reduction of supply voltage has made SRAMs more vulnerable to soft errors than ever before. The vulnerability has been accentuated by increased variability in device parameters. In this paper, we present an analytical model for critical charge in order to assess the soft error vulnerability of 6T SRAM cell. The model takes into account the dynamic behavior of the cell and demonstrates a simple technique to decouple the nonlinearly coupled storage nodes. Decoupling of storage nodes enables solving associated current equations to determine the critical charge for an exponential noise current. The critical charge model thus... 

    Numerical simulation of non-uniform Gas diffusion layer porosity effect on polymer electrolyte membrane fuel cell performance

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 20, Issue 2 , 2007 , Pages 179-192 ; 1728-144X (ISSN) Roshandel, R ; Farhanieh, B ; Sharif University of Technology
    Materials and Energy Research Center  2007
    Abstract
    Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study the porosity variation in GDL is calculated by considering the applied pressure and the amount of water generated in the cell. A two dimensional mathematical model is developed to investigate the effect of stack compression and water generation on porosity of GDL and cell performance. The validity of... 

    Effect of cysteine oxidation in SARS-CoV-2 receptor-binding domain on its interaction with two cell receptors: Insights from atomistic simulations

    , Article Journal of Chemical Information and Modeling ; Volume 62, Issue 1 , 2022 , Pages 129-141 ; 15499596 (ISSN) Ghasemitarei, M ; Privat Maldonado, A ; Yusupov, M ; Rahnama, S ; Bogaerts, A ; Ejtehadi, M. R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly... 

    Efficient biodegradation of naphthalene by a newly characterized indigenous achromobacter sp. FBHYA2 isolated from Tehran oil refinery complex

    , Article Water Science and Technology ; Volume 66, Issue 3 , March , 2012 , Pages 594-602 ; 02731223 (ISSN) Farjadfard, S ; Borghei, S. M ; Hassani, A. H ; Yakhchali, B ; Ardjmand, M ; Zeinali, M ; Sharif University of Technology
    IWA Pub  2012
    Abstract
    A bacterial strain, FBHYA2, capable of degrading naphthalene, was isolated from the American Petroleum Institute (API) separator of the Tehran Oil Refinery Complex (TORC). Strain FBHYA2 was identified as Achromobacter sp. based on physiological and biochemical characteristics and also phylogenetic similarity of 16S rRNA gene sequence. The optimal growth conditions for strain FBHYA2 were pH 6.0, 30°C and 1.0% NaCl. Strain FBHYA2 can utilize naphthalene as the sole source of carbon and energy and was able to degrade naphthalene aerobically very fast, 48 h for 96% removal at 500 mg/L concentration. The physiological response of Achromobacter sp., FBHYA2 to several hydrophobic chemicals... 

    Toxicity of graphene and graphene oxide nanowalls against bacteria

    , Article ACS Nano ; Volume 4, Issue 10 , October , 2010 , Pages 5731-5736 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an... 

    Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)

    , Article Renewable Energy ; Volume 35, Issue 1 , 2010 , Pages 226-231 ; 09601481 (ISSN) Hasani-Sadrabadi, M.M ; Dashtimoghadam, E ; Ghaffarian, S.R ; Hasani Sadrabadi, M.H ; Heidari, M ; Moaddel, H ; Sharif University of Technology
    2010
    Abstract
    In the present research, proton exchange membranes based on partially sulfonated poly (ether sulfone) (S-PES) with various degrees of sulfonation were synthesized. It was found that the increasing of sulfonation degree up to 40% results in the enhancement of water uptake, ion exchange capacity and proton conductivity properties of the prepared membranes to 28.1%, 1.59 meq g -1, and 0.145 S cm -1, respectively. Afterwards, nanocomposite membranes based on S-PES (at the predetermined optimum sulfonation degree) containing various loading weights of organically treated montmorillonite (OMMT) were prepared via the solution intercalation technique. X-ray diffraction patterns revealed the... 

    Theoretical modeling of actin-retrograde-flow passing clusters of confined T cell receptors

    , Article Mathematical Biosciences ; Volume 283 , 2017 , Pages 1-6 ; 00255564 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Through the activation process of T cells, actin filaments move from the cell periphery toward the cell center. The moving filaments engage with T cell receptors and thus contribute to transportation of the signaling molecules. To study the connection between the moving actin filaments and T cell receptors, an experiment available in the literature has measured filaments flow velocity passing over a region of confined clusters of receptors. It shows that flow velocity decreases in the proximity of the receptors, and then regains its normal value after traversing the region, suggesting a dissipative friction-like connection. In this work, we develop a minimal theoretical model to re-examine... 

    The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell

    , Article Bioresource Technology ; Volume 261 , 2018 , Pages 350-360 ; 09608524 (ISSN) Bazdar, E ; Roshandel, R ; Yaghmaei, S ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study develops a photosynthetic microalgae microbial fuel cell (PMMFC) engaged Chlorella vulgaris microalgae to investigate effect of light intensities and illumination regimes on simultaneous production of bioelectricity, biomass and wastewater treatment. The performance of the system under different light intensity (3500, 5000, 7000 and 10,000 lx) and light/dark regimes (24/00, 12/12, 16/8 h) was investigated. The optimum light intensity and light/dark regimes for achieving maximum yield of PMMFC were obtained. The maximum power density of 126 mW m−3, the coulombic efficiency of 78% and COD removal of 5.47% were achieved. The maximum biomass concentration of 4 g l−1 (or biomass yield...